【灰狼算法】速度辅助全局搜索机制的增强型灰狼优化算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文旨在介绍一种新颖的灰狼优化器 (Grey Wolf Optimization, GWO) 变体,命名为速度辅助灰狼优化器 (Velocity-Aided Grey Wolf Optimizer, VAGWO)。原始的 GWO 算法在位置更新过程中缺乏速度项,我们认为这正是其探索能力不足的主要因素。VAGWO 通过精心设计并加入速度项至 GWO 的更新公式中,有效地克服了这一缺陷。此外,为了进一步增强 VAGWO 的探索和开发能力,我们采用了一种动态调整策略:在迭代初期,强调引导狼 (leading wolf) 朝向其他狼移动的步长,以扩大搜索范围,促进全局探索;而在迭代后期,则逐渐减小步长,从而更精细地搜索局部最优解,提升开发能力。

为了验证 VAGWO 的性能,我们将其与一系列流行的以及最新提出的元启发式优化算法进行了比较。这些算法应用于 13 个高维移位标准基准函数以及 10 个源自 CEC2017 测试套件的复杂组合函数。此外,我们还利用三个工程问题来评估 VAGWO 在实际应用中的表现。除了性能评估,我们还针对原始 GWO 算法对 VAGWO 的复杂度进行了评估。结果表明,VAGWO 是一种计算效率高的算法,在优化高维和复杂问题时能够生成高度准确的结果。

背景及动机

灰狼优化算法 (GWO) 是一种受到灰狼社会等级制度和狩猎行为启发的元启发式算法。由于其简单易懂、参数较少等优点,GWO 在许多领域得到了广泛应用。然而,原始 GWO 算法也存在一些不足。其中最主要的缺陷之一是其探索能力相对较弱。GWO 的位置更新机制主要依赖于 α、β 和 δ 狼的位置信息来引导狼群的搜索方向。这种机制在开发阶段能够有效收敛至局部最优解,但在探索阶段,由于缺乏足够的随机性和多样性,容易陷入局部最优,无法有效探索更广阔的搜索空间。

VAGWO 算法的核心思想

为了解决 GWO 算法的探索能力不足问题,本文提出了 VAGWO 算法。VAGWO 的核心思想是在 GWO 的位置更新过程中引入速度项,并采用动态调整策略来增强探索和开发能力。

  • 引入速度项:

     在物理学中,速度是一个重要的概念,它描述了物体运动的方向和速度。在优化算法中,引入速度项可以帮助个体(例如狼)在搜索空间中更有效地移动。VAGWO 通过引入一个速度向量,记录了每只狼在搜索空间中的移动方向和速度。在位置更新时,速度项会影响狼的移动方向和步长,从而增加搜索的多样性和随机性,有助于跳出局部最优解。速度的更新公式需要精心设计,以平衡探索和开发。例如,可以考虑使用惯性权重、认知因子和社会因子来调整速度的更新。

  • 动态调整策略:

     为了进一步增强 VAGWO 的探索和开发能力,我们采用了一种动态调整策略。在迭代初期,我们强调引导狼朝向其他狼移动的步长,以扩大搜索范围,促进全局探索。这可以通过增大相应的系数或引入随机扰动来实现。在迭代后期,我们逐渐减小步长,从而更精细地搜索局部最优解,提升开发能力。这种动态调整策略可以使 VAGWO 在探索和开发之间取得更好的平衡,从而提高算法的整体性能。

VAGWO 算法的详细实现

VAGWO 算法的具体实现步骤如下:

  1. 初始化:

     随机生成初始种群,并初始化每只狼的位置和速度。

  2. 评估:

     计算每只狼的适应度值。

  3. 更新领导狼:

     根据适应度值,更新 α、β 和 δ 狼的位置。

  4. 更新速度:

     根据公式更新每只狼的速度。

  5. 更新位置:

     根据公式更新每只狼的位置。位置更新公式中需要包含速度项,并根据迭代次数动态调整步长。

  6. 判断终止条件:

     如果满足终止条件(例如达到最大迭代次数),则算法终止,输出最优解;否则,返回步骤 2。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值