多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

VMD-SSA-LSSVM、SSA - LSSVM、VMD - LSSVM 和 LSSVM 这四种模型在多变量时间序列预测中各有特点,以下是它们的对比:

模型原理

  • LSSVM

    :最小二乘支持向量机,是在支持向量机基础上,将传统 SVM 中的不等式约束转化为等式约束,把二次规划问题转化为线性方程组求解,从而降低计算复杂度,可通过寻找最优超平面实现对多变量时间序列的预测,能捕捉变量间关系。

  • VMD - LSSVM

    :在 LSSVM 基础上,先利用变分模态分解(VMD)将多变量时间序列分解为多个不同频率子序列,再分别用 LSSVM 对各子序列进行预测,最后将结果组合。VMD 能自适应地将时间序列分解,减少噪声和复杂趋势影响,提高 LSSVM 预测准确性。

  • SSA - LSSVM

    :借助麻雀搜索算法(SSA)优化 LSSVM 的参数(如惩罚参数和核函数参数)。SSA 模拟麻雀觅食和反捕食行为,在参数空间搜索最优参数组合,以提升 LSSVM 预测性能。

  • VMD - SSA - LSSVM

    :综合了 VMD 和 SSA 的优点,先通过 VMD 对多变量时间序列分解,然后对每个子序列利用 SSA 优化 LSSVM 参数,最后进行预测,结合了两者优势,更有效地处理复杂数据和优化模型。

预测性能

  • LSSVM

    :能处理多变量时间序列,但对于复杂数据,单独使用时预测精度可能受限,因难以直接处理数据中的噪声、复杂趋势及长期依赖关系。

  • VMD - LSSVM

    :通过 VMD 分解,能更好处理数据中的噪声和不同频率成分,提高对复杂时间序列的拟合能力,预测准确性通常高于 LSSVM,尤其在数据存在明显不同频率特征时效果更显著。

  • SSA - LSSVM

    :经 SSA 优化参数,可避免 LSSVM 陷入局部最优,提高模型泛化能力和预测精度,在不同数据集上能更稳定地发挥性能,但对数据复杂结构的处理能力相对有限。

  • VMD - SSA - LSSVM

    :结合了 VMD 分解数据和 SSA 优化参数的优势,既能有效处理数据中的复杂成分,又能优化模型参数,在预测准确性和稳定性方面通常表现更优,能更好应对多变量时间序列中的各种复杂情况。

计算复杂度

  • LSSVM

    :计算复杂度主要取决于训练数据量和模型参数数量,相对较低。

  • VMD - LSSVM

    :因增加了 VMD 分解步骤,计算量有所增加,但 VMD 分解计算效率较高,整体计算复杂度仍在可接受范围内。

  • SSA - LSSVM

    :SSA 优化参数过程需多次迭代计算,计算复杂度高于 LSSVM,但优化过程通常收敛较快,不会导致计算成本过高。

  • VMD - SSA - LSSVM

    :综合了 VMD 和 SSA 的计算量,计算复杂度相对最高,但在处理复杂多变量时间序列时,其性能提升值得一定的计算成本投入。

模型适应性

  • LSSVM

    :适用于数据特征相对简单、噪声较小的多变量时间序列预测,对于线性或接近线性可分的数据效果较好。

  • VMD - LSSVM

    :适用于具有明显不同频率成分和噪声的多变量时间序列,如电力负荷、气象数据等,能有效提取不同特征进行预测。

  • SSA - LSSVM

    :对不同类型数据集适应性强,尤其在数据分布复杂、LSSVM 参数易陷入局部最优时,SSA 优化能提高模型适应性和泛化能力。

  • VMD - SSA - LSSVM

    :几乎适用于所有复杂多变量时间序列数据,能应对各种噪声、不同频率成分和复杂趋势的数据,在工业过程监控、金融风险预测等领域有广泛应用前景。

综上所述,VMD - SSA - LSSVM 在多变量时间序列预测中综合性能较优,但计算复杂度相对较高;LSSVM 简单但适用于较简单数据;VMD - LSSVM 和 SSA - LSSVM 分别在处理数据特征和优化参数方面有优势,可根据具体数据特点和预测需求选择合适的模型。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

   % 清空变量

clc                     % 清空命令行

%%  导入数据

res = xlsread('data.xlsx');

%%  数据分析

num_size = 0.8;                              % 训练集占数据集比例

outdim = 1;                                  % 最后一列为输出

num_samples = size(res, 1);                  % 样本个数

res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)

num_train_s = round(num_size * num_samples); % 训练集样本个数

f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集

P_train = res(1: num_train_s, 1: f_)';

T_train = res(1: num_train_s, f_ + 1: end)';

M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';

T_test = res(num_train_s + 1: end, f_ + 1: end)';

N = size(P_test, 2);

%%  数据归一化

[P_train, ps_input] = mapminmax(P_train, 0, 1);

P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值