【路径规划】基于全覆盖牛耕法考虑障碍物回退路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究针对传统全覆盖牛耕法在面对障碍物时路径规划不合理的问题,提出一种基于全覆盖牛耕法并考虑障碍物回退的路径规划方法。通过分析牛耕法的基本原理,结合障碍物检测与处理机制,设计回退策略和路径重规划算法,实现机器人或设备在复杂环境下的高效全覆盖路径规划。实验结果表明,该方法能有效避开障碍物并完成区域全覆盖,相比传统方法在路径规划效率和覆盖率上有显著提升,为实际场景中的路径规划提供了新的思路和解决方案。

关键词

全覆盖牛耕法;障碍物回退;路径规划;路径重规划

一、引言

路径规划作为机器人技术、自动化设备等领域的关键技术,在诸如农业播种、清洁机器人、物流搬运等众多实际应用场景中发挥着重要作用。全覆盖路径规划旨在使机器人或设备能够遍历目标区域内的所有位置,确保区域内的每个点都能被访问到。牛耕法因其简单直观、易于实现,成为早期全覆盖路径规划的常用方法,它模拟农田中牛犁地的方式,按照一定的规则在区域内往复移动,从而实现对区域的覆盖。

然而,在实际应用场景中,环境往往是复杂多变的,充满了各种障碍物,传统的全覆盖牛耕法在遇到障碍物时,由于缺乏有效的应对机制,会导致路径规划失败或者规划出的路径效率低下,无法实现真正意义上的全覆盖。例如,在农业作业中,田间可能存在树木、石块等障碍物;在室内清洁场景中,会有桌椅、柜子等家具阻挡机器人的行进路线。因此,研究如何在全覆盖牛耕法的基础上,引入障碍物回退机制,使路径规划方法能够适应复杂环境,具有重要的理论意义和实际应用价值。

本研究的目标是提出一种基于全覆盖牛耕法并考虑障碍物回退的路径规划方法,通过对障碍物的检测、回退策略的设计以及路径的重规划,使机器人或设备在复杂环境下能够高效地完成区域全覆盖任务。

二、全覆盖牛耕法原理

2.1 基本概念

全覆盖牛耕法是一种简单的路径规划方法,其核心思想是模拟牛在农田中犁地的方式。假设目标区域为一个二维平面,机器人或设备从区域的某一个角落开始,沿着平行于某一坐标轴的方向(例如水平方向)直线前进,当遇到区域边界或者障碍物时,停止前进并转向,沿着垂直于原方向的直线移动一定距离(通常为一个固定步长,如机器人的一个运动单位长度),然后再沿着与原前进方向相反的方向直线前进,如此往复,直到遍历完整个目标区域。

2.2 路径规划流程

  1. 起始位置设定:确定机器人或设备在目标区域内的起始位置,通常选择区域的一个角落点,如左上角点。
  1. 直线前进:机器人按照设定的方向(如水平向右)直线前进,在前进过程中实时检测是否到达区域边界或遇到障碍物。
  1. 边界与障碍物检测:通过安装在机器人上的传感器(如激光雷达、超声波传感器等)实时感知周围环境信息,判断是否到达区域边界或者检测到障碍物。当检测到区域边界时,机器人停止前进并转向;当检测到障碍物时,也停止前进并进入障碍物处理流程。
  1. 转向操作:当机器人遇到边界或障碍物停止前进后,按照预设的转向规则进行转向。例如,从水平向右移动转向垂直向下移动,或者从垂直向下移动转向水平向左移动,转向角度通常为 90 度。转向后,机器人沿着新的方向移动一个固定步长的距离。
  1. 重复上述步骤:机器人完成转向并移动固定步长后,再次按照新的方向直线前进,重复上述直线前进、边界与障碍物检测、转向操作等步骤,直到整个目标区域被完全覆盖。

2.3 优缺点分析

  • 优点:全覆盖牛耕法具有简单直观、易于实现的特点,其路径规划算法逻辑清晰,对计算资源的要求相对较低,在简单无障碍物的环境中能够快速有效地完成区域全覆盖任务。
  • 缺点:在存在障碍物的复杂环境下,该方法的缺陷较为明显。由于缺乏对障碍物的有效处理机制,当机器人遇到障碍物时,要么直接停止前进导致路径规划失败,要么会出现重复覆盖部分区域、遗漏部分区域等情况,无法实现高效的全覆盖路径规划,并且规划出的路径可能存在大量无效移动,导致路径规划效率低下。

三、考虑障碍物回退的路径规划设计

3.1 障碍物检测

为了使机器人能够及时发现障碍物,需要在机器人上安装合适的传感器。本研究采用激光雷达作为主要的障碍物检测传感器,激光雷达具有检测精度高、检测范围广、响应速度快等优点,能够实时获取机器人周围环境的三维点云数据。通过对这些点云数据进行处理和分析,提取出障碍物的位置、形状和大小等信息。

具体的障碍物检测算法如下:首先,对激光雷达采集到的点云数据进行预处理,包括去除离群点、滤波等操作,以提高数据的质量;然后,采用聚类算法(如 DBSCAN 算法)对预处理后的点云数据进行聚类,将属于同一障碍物的点云数据聚合成一个聚类,每个聚类代表一个障碍物;最后,根据聚类结果计算出每个障碍物的位置坐标、尺寸大小等信息,并将其存储在机器人的环境地图中,以便后续的路径规划使用。

3.2 回退策略

当机器人检测到障碍物时,为了能够避开障碍物并继续完成全覆盖任务,需要设计合理的回退策略。本研究提出的回退策略如下:

  1. 确定回退方向:当机器人检测到障碍物时,首先判断障碍物相对于机器人的位置方向。如果障碍物在机器人的正前方,则机器人选择向左右两侧中的某一侧进行回退;如果障碍物在机器人的侧方,则机器人选择向相反侧进行回退。为了确定具体的回退方向,可以根据机器人当前的运动方向和障碍物的位置信息,按照一定的规则进行选择。例如,当机器人水平向右运动且正前方检测到障碍物时,优先选择向左回退;当机器人垂直向下运动且正前方检测到障碍物时,优先选择向上回退。
  1. 确定回退距离:回退距离的确定需要综合考虑障碍物的大小、机器人的尺寸以及后续路径规划的需求。为了确保机器人能够安全避开障碍物,回退距离应大于障碍物的尺寸与机器人自身尺寸之和。在实际应用中,可以根据具体情况设定一个合适的回退距离参数,如机器人的运动步长的若干倍(例如 3 倍)。
  1. 执行回退操作:确定回退方向和距离后,机器人按照确定的方向和距离进行回退操作。在回退过程中,同样需要实时检测周围环境,确保回退过程中不会遇到新的障碍物。

3.3 路径重规划

机器人完成回退操作后,需要对原有的路径规划进行重新规划,以确保能够继续完成全覆盖任务。路径重规划的方法如下:

  1. 更新环境地图:机器人在回退过程中获取到了新的环境信息,包括障碍物的位置变化等,需要将这些信息更新到环境地图中,使环境地图能够准确反映当前的环境状态。
  1. 确定新的起始点:以机器人回退后的位置作为新的起始点,基于更新后的环境地图,重新进行路径规划。新的路径规划仍然基于全覆盖牛耕法的基本原理,但需要避开已检测到的障碍物。
  1. 路径规划算法:采用改进后的全覆盖牛耕法路径规划算法,在规划路径时,将障碍物的位置信息作为约束条件,确保规划出的路径不会穿过障碍物。具体来说,在每次直线前进过程中,除了检测区域边界外,还需要检测是否会遇到障碍物。如果检测到前方存在障碍物,则按照回退策略进行回退,并重新规划后续路径。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值