【故障诊断】格拉姆变换与并行网络CNN故障诊断研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献 

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

📚2 运行结果

格拉姆矩阵图像:

部分代码:

%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.001, ...         % 初始学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线
% % start training
t0 = tic;  %开始计时
net = trainNetwork(trainD,train_Y, layers0,options0 );
toc(t0); % 从t0开始到此处的执行时间
%% Accuracy assessment
pred = classify(net, testD);
pred = pred';
accuracy=sum(test_Y==pred)/length(pred);   %计算预测的确率

% 标准bilstm作图
% 画方框图
figure
confMat = confusionmat(test_Y,pred);  %test_Y是真实值标签
zjyanseplotConfMat(confMat.');
xlabel('Predicted label')
ylabel('Real label')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
% 作图
figure
scatter(1:length(pred),pred,'r^')
hold on
scatter(1:length(pred),test_Y,'b*')
legend('预测类别','真实类别','NorthWest')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]李宗源,陈谦,钱倍奇,等.基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断[J].电力自动化设备, 2024, 44(8):153-159.

[2]张国栋,尹 强,羊 柳.基于格拉姆角场和 PSO-CNN 的滚动轴承 故障诊断方法[J].Journal of Ordnance Equipment Engineering, 2024, 45(4).

🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

### 关于格拉姆角场并行CNN分类的MATLAB实现 对于格拉姆角场(Gram Angular Field, GAF)并行卷积神经网络(Convolutional Neural Network, CNN)分类,在学术界和工业界的实践中,通常更倾向于使用Python及其丰富的库支持来完成此类任务。然而,针对特定需求采用MATLAB实现也是可行的。 #### 创建GAF图像 为了准备用于训练的数据集,需先将时间序列数据转换成GAF图像形式。这一步骤可以通过计算两个向量之间的余弦相似度矩阵,并将其映射到[-1, 1]区间内形成角度表示,再通过颜色编码转化为二维图像[^2]。 ```matlab function gafImage = createGAF(dataVector) % Normalize data to [-1, 1] normalizedData = rescale(dataVector, -1, 1); % Compute Gram matrix using cosine similarity gramMatrix = zeros(length(normalizedData)); for i=1:length(normalizedData)-1 for j=i+1:length(normalizedData) cosSim = dot(normalizedData(i), normalizedData(j)) / ... (norm(normalizedData(i))*norm(normalizedData(j))); gramMatrix(i,j) = acos(cosSim)/pi; gramMatrix(j,i) = gramMatrix(i,j); % Symmetric property end end % Convert the angle values into color map colormap jet; % Choose a suitable colormap here imagesc(gramMatrix); axis equal tight off; set(gca,'YDir','normal'); end ``` #### 并行化处理多张GAF图片 利用MATLAB内置工具箱中的`parfor`命令可以有效地加速批量生成GAF的过程。此方法允许跨多个CPU核心分配工作负载,从而提高效率。 ```matlab % Assuming 'timeSeriesDataset' is your input dataset containing time series vectors. numImages = size(timeSeriesDataset, 1); gafImagesCellArray = cell(numImages, 1); parpool('local', maxNumCompThreads()); % Initialize parallel pool with available threads count. parfor idx = 1:numImages gafImagesCellArray{idx} = createGAF(timeSeriesDataset(idx,:)); end delete(gcp('nocreate')); % Clean up after finishing parallel operations. ``` #### 构建并训练CNN模型 虽然MATLAB提供了较为完善的深度学习框架支持,但在实际应用中构建复杂的CNN架构可能不如TensorFlow/Keras那样直观便捷。不过,仍然能够定义简单的层结构来进行实验性的尝试。 ```matlab layers = [ imageInputLayer([height width channels]) convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer reluLayer fullyConnectedLayer(outputSize) softmaxLayer classificationLayer]; options = trainingOptions('adam',... 'MaxEpochs',maxEpochs,... 'MiniBatchSize',miniBatchSize,... 'InitialLearnRate',initialLearningRate,... 'Shuffle','every-epoch',... 'Verbose',false,... 'Plots','training-progress'); net = trainNetwork(trainingSet,layers,options); ``` 需要注意的是,上述代码片段仅作为概念验证性质的存在;具体参数设置应依据实际情况调整优化。此外,由于缺乏直接提及无限宽度神经网络、高斯过程等相关技术细节的信息源,这部分内容未被纳入讨论范围之内[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值