💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
📚2 运行结果
格拉姆矩阵图像:
部分代码:
%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 150, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.001, ... % 初始学习率
'LearnRateDropFactor',0.01, ... % 学习率调整因子
'L2Regularization', 0.001, ... % 正则化参数
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 1, ... % 关闭优化过程
'Plots', 'none'); % 画出曲线
% % start training
t0 = tic; %开始计时
net = trainNetwork(trainD,train_Y, layers0,options0 );
toc(t0); % 从t0开始到此处的执行时间
%% Accuracy assessment
pred = classify(net, testD);
pred = pred';
accuracy=sum(test_Y==pred)/length(pred); %计算预测的确率
% 标准bilstm作图
% 画方框图
figure
confMat = confusionmat(test_Y,pred); %test_Y是真实值标签
zjyanseplotConfMat(confMat.');
xlabel('Predicted label')
ylabel('Real label')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
% 作图
figure
scatter(1:length(pred),pred,'r^')
hold on
scatter(1:length(pred),test_Y,'b*')
legend('预测类别','真实类别','NorthWest')
title(['测试集正确率 = ',num2str(accuracy*100),' %'])
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李宗源,陈谦,钱倍奇,等.基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断[J].电力自动化设备, 2024, 44(8):153-159.
[2]张国栋,尹 强,羊 柳.基于格拉姆角场和 PSO-CNN 的滚动轴承 故障诊断方法[J].Journal of Ordnance Equipment Engineering, 2024, 45(4).
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取