3D Gaussian Splatting训练自己的数据集

本文详细介绍了如何在Windows平台上安装所需环境,从获取相机位姿到训练3DGaussianSplatting模型,并提供可视化工具的使用方法。关键步骤包括安装Python、CUDA,使用COLMAP获取相机数据,以及执行训练和可视化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3D Gaussian Splatting

项目github地址:https://github.com/graphdeco-inria/gaussian-splatting

训练3D Gaussian Splatting模型步骤 (以下在windows平台实现):

前置步骤 

  1. 安装python  https://www.python.org/
  2. 安装git  https://git-scm.com/
  3. 安装适合电脑版本的cuda  https://developer.nvidia.com/cuda-toolkit
  4. 拉取项目 在想要放的目录的地址栏输入cmd,然后输入
  5. git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
  6. 或者直接github下载
  7. 安装anaconda  Distribution | Anaconda
  8. 创建anaconda环境  conda create -n myenv python=3.9 pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

步骤1:记录场景

 需要场景的各个角度的图片,推荐100-1000张。数量过少会导致模型质量不够,数量过多会导致过长的训练时间。为了保持更好的效果,每张照片需保持一致的曝光。

准备好照片之后,在项目中新建一个data文件夹,再在data文件夹中新建一个input文件夹,放入照片

步骤2:获取相机位姿 

使用COLMAP获取相机位姿,

下载COLMAP并解压      https://github.com/colmap/colmap/releases/tag/3.8

将解压后的路径加入系统环境变量

进入到创建好的anaconda环境

  1. conda activate myenv

及项目目录下输入以下命令获取相机资位

  1. python convert.py -s data

步骤3:训练Gaussian Splatting

在创建好的anaconda环境中安装以下依赖

  1. pip install plyfile tqdm
  2. pip install submodules/diff-gaussian-rasterization
  3. pip install submodules/simple-knn

完成安装后,运行以下命令训练

  1. python train.py -s data -m data/output

步骤4:可视化模型

下载可视化工具并解压到项目中

  1. https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/binaries/viewers.zip

通过下列命令运行:

  1. .\viewers\bin\SIBR_gaussianViewer_app -m data/output

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值