StableDiffusion的安装部署其实并不困难,只需简单点击几下,几分钟就能安装好,不管是windows还是苹果mac电脑,关于StableDiffusion的各种安装方式,这片文章一一来给大家讲明白。(所有安装资料都给大家整理好啦,后台发送学习获取或者看下图备注)
StableDiffusionWebUI
StableDiffusion最早开源出来只是一大堆源代码,而最具代表性的是AUTOMATIC1111大神把这些源代码做成了一个基于浏览器网页运行的程序,可以非常直观的调整、输入参数和拓展插件。
Python
Stable Diffusion WebUI就是基于Python搭建的,所以需要在电脑上搭建Python才能让Stable Diffusion
WebUI正常运行。
[Git]
StableDiffusion、还有它的各种插件都是在GitHub上开源的,通过Git可以把StableDiffusion和各种插件安装和更新同步到自己电脑。
配置要求
Win、Mac都能安装,但Mac电脑和AMD显卡的电脑是用CPU渲染的,速度会比较慢,推荐搭配NVIDIA显卡的Win电脑使用。
推荐配置,Win10以上的系统
CPU:没有硬性要求
显卡:RTX 2060 6GB显存以上的显卡(最好是8GB显存或以上)
内存:8GB以上的内存(最好是16GB内存或以上)
硬盘:20—100GB空余的硬盘空间
Win安装(两种方法)
方法一:整合包安装
优点:安装超级简单、方便,能一键启动,自动更新,自带部分模型和必要的插件,不需要安装python等前置软件
缺点:有可能出现或多或少的问题,集成的插件有可能是自己不需要的
市面上推荐的整合包主要有秋葉aaaki和独立研究员-星空的整合包,他们内核都是一样的,在使用上没有什么区别,只是封装的启动界面和集成的插件有一些区别。新手推荐安装秋葉老师的整合包,使用AMD显卡和集成显卡或者配置低一些的同学推荐安装星空老师的整合包。
秋葉整合包安装方法:
下载好整合包后,把整合包放置在硬盘空间充足的磁盘内,路径最好不要带中文路径的文件夹,把sd-webui-
aki-v4.2解压出来,点击“启动器运行依赖-dotnet-6.0.11.exe”进行安装,进入sd-webui-aki-v4.2文件夹点击“A启动器”,然后点击一键启动,等待程序自动加载必要的启动项,就可以进入StableDiffusion WebUI界面了。详细安装方法可以看最下方视频教程。
AMD显卡安装方法:
基于
lshqqytiger分支制作,功能与 v4.4 版本整合包相同
仅经过朋友一台电脑测试,不保证完全可用
使用方法和普通整合包完全一致,首次使用打开启启动器后,在启动器设置-高级选项修改生成引擎,选择A卡。
之后完全与普通整合包相同,直接启动即可。会提示没有xformers,这是正常的,A卡用不了
启动后如图所示,和整合包v4.4版本一致
方法二:手动安装
优点:最纯正的Stable Diffusion WebUI程序,可以按需按需安装插件,一步步了解StableDiffusion的部署和插件安装过程,对于每个部件和后续出现问题更容易找到根源和处理方法。
缺点:麻烦,要找到模型和插件一个个下载安装。
一、安装python
建议安装3.10.6版本,这个是Stable DiffusionWebUI作者推荐安装版本,打开[http://python.org/downloads/]页面找到3.10.6版本下载,然后安装,安装没有什么难度,唯一需要注意的是安装时要勾选add
python 3.10 to PATH。
二、安装git
Git官网:[https://git-scm.com/download],找到64-bit Git windows Setup进行下载。安装一直下一步就可以。
三、安装Stable Diffusion WebUI
接着安装Stable Diffusion WebUI,在硬盘空间充足,并且没有中文路径的文件夹导航栏,输入cmd,复制下面代码
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
回车,等待安装结束,就可以看到stable-diffusion-webui文件夹了,点击进入打开webui-user.bat,等待安装必要的启动项,然后就可以在浏览器打开127.0.0.1:7860进入Stable Diffusion WebUI界面了。
Mac安装
一、安装Homebrew
cmd+空格,搜索终端,打开终端,把这段代码粘贴到终端回车。
/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"
一路有1选1,有Y选Y,需要输入开机密码,不会显示密码,直接输入然后回车即可。当询问core cask
services可以回车跳过即可,安装完,在终端输入[brew-v],能查询到版本就没有问题了。
二、安装python和git等部件
安装python和git等部件,在终端输入下面代码:
brew install cmake protobuf rust python@3.10 git wget
安装完毕在终端输入python3 -V,能查询到版本就没问题了。
三、安装[stable-diffusion-webui]
在需要安装的stable-diffusion-webui的文件夹上右键,进入终端,(访达界面直接按cmd+option+P,下方就会多出导航栏,在导航栏的stable-diffusion-webui的文件夹上右键,进入终端)然后输入下面代码回车:
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
安装完毕后,同样的方法,右键点击上一步刚刚新安装的stable-diffusion-webui文件夹,点击“在终端中打开”,然后输入如下代码,回车即可。
./webui.sh
Mac安装划重点
Mac安装其实就几个步骤,安装完[brew],输入brew-v查询一下有没版本显示,返回版本号就证明没问题可以下一步,继续在同一个终端界面安装一系列的前置部件,安装完输入python3-V查询是否安装成功,有版本返回就可以了,这时候关闭终端。然后准备通过git命令下载[stablediffusion],这次是要在自己自定的文件夹上右键终端打开,安装后就会在这个文件夹里面多出stable-
diffusion-webui,等待安装完毕后关闭终端,重新在stable-diffusion-webui这个文件夹上右键终端打开(这两次终端打开的文件夹是不一样的),然后再输入./webui.sh就可以了,一步步排除看是哪一步出问题。
安装过程中遇到的问题
安装过程中由于设备的不同,环境的不同,很可能会出现各种各种大大小小的问题,这里我不能还原大家安装过程遇到的问题,但可以给大家一些解决思路。
尝试更新显卡驱动
更新显卡驱动会解决一部分错误问题。
python、Git等前置部件按默认路径安装
python 和 git等前置部件,都按默认路径安装在C盘,不要改变它们的位置,这样会很大程度减少出错几率。
stable-diffusion-webui路径不要有中文
stable-diffusion-webui可以不安装在C盘,但安装路径尽量简单不要套太多层文件夹,每一层文件夹不要有任何中文,有充足的硬盘空余空间。
当安装出现问题,可以尝试另一种安装方式
当有问题的时候,可以尝试换一个整合包或者纯手动方式安装,总有一个方法能行得通。
也可以尝试直接手动搬stable-diffusion-webui下来
点选code,点选download Zip,就是把weibUI整个原版文件夹下载到自己的电脑上。
也有可能是缺少模型
随便下载一个模型包,是ckpt 或者 safetensor后缀的,放置在stable-diffusion-webui/models/ 文件夹里面再次启动。
下来
点选code,点选download Zip,就是把weibUI整个原版文件夹下载到自己的电脑上。
也有可能是缺少模型
随便下载一个模型包,是ckpt 或者 safetensor后缀的,放置在stable-diffusion-webui/models/ 文件夹里面再次启动。
这里直接将该软件分享出来给大家吧~
1.stable diffusion安装包
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.SD从0到落地实战演练
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!