第G2周:人脸图像生成(DCGAN)

一、课题背景和开发环境

📌第G1周:生成对抗网络(GAN)入门📌
Python 3.8.12
numpy==1.21.5 -> 1.24.3
pytorch==1.8.1+cu111
本周任务: 
📌 基础任务:
深度卷积对抗网络(DCGAN)的基本原理
学习本文DCGAN代码,并跑通代码
了解DCGAN与GAN的区别
🎈进阶任务:
调用训练好的模型生成新图像

二、理论基础

1、DCGAN原理

深度卷积对抗网络(Deep Convolutional Generative Adversarial Networks,简称DCGAN)是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)两个神经网络组成。DCGAN结合了卷积神经网络(Convolutional Neural Networks,简称CNN)和生成对抗网络(Generative Adversarial Networks,简称GAN)的思想,用于生成逼真的图像。 它是GAN的一种模型改进,其将卷积运算的思想引入到生成式模型当中来做无监督的训练,利用卷积网络强大的特征提取能力来提高生成网络的学习效果。DCGAN模型有以下特点:

  • 判别器模型使用卷积步长取代了空间池化,生成器模型中使用反卷积操作扩大数据维度。

  • 除了生成器模型的输出层和判别器模型的输入层,在整个对抗网络的其它层上都使用了Batch Normalization,原因是Batch

  • Normalization可以稳定学习,有助于优化初始化参数值不良而导致的训练问题。

  • 整个网络去除了全连接层,直接使用卷积层连接生成器和判别器的输入层以及输出层。

  • 在生成器的输出层使用Tanh激活函数以控制输出范围,而在其它层中均使用了ReLU激活函数;在判别器上使用Leaky ReLU激活函数。
    在这里插入图片描述
    上图是一种常见的 DCGAN 结构

  • 左边生成网络(Generator):四个转置卷积层(DeConv)和四个卷积层(Conv)

  • 右边判别网络(Discriminator):四个转置卷积层(DeConv)和四个卷积层(Conv)
    44512代表这一层共有512个大小为4*4的特征图 在卷积层之前和之后分别使用了批归一化和修正线性单元激活两种处理方法。Tanh 和 LeakyReLU 分别表示双切正切激活和弱修正线性激活。

2、训练原理

在这里插入图片描述
DCGAN 模型主要包括了一个生成网络 G 和一个判别网络 D,生成网络 G 负责生成图像,它接受一个随机的噪声z,通过该噪声生成图像,将生成的图像记为G(z),判别网络D负责判别一张图像是否为真实的,它的输入是x,代表一张图像,输出D(x)表示x为真实图像的概率。 实际上判别网络D是对数据的来源进行一个判别:究竟这个数据是来自真实的数据分布Pd(x)判别为“1”),还是来自于一个生成网络G所产生的一个数据分布Pg(z)(判别为“0”)。所以在整个训练过程中,生成网络G的目标是生成可以以假乱真的图像G(z),当判别网络D无法区分,即D(G(z))=0.5时,便得到了一个生成网络G用来生成图像扩充数据集。

三、前期准备

1、导入第三方库

import torch, random, random, os
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

manualSeed = 42  # 随机种子
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.use_deterministic_algorithms(True) # Needed for reproducible results

2、设置超参数

dataroot = "./data/GAN-Data/"  # 数据路径
batch_size = 128  # 训练过程中的批次大小
image_size = 64   # 图像的尺寸(宽度和高度)
nz  = 100         # z潜在向量的大小(生成器输入的尺寸)
ngf = 64          # 生成器中的特征图大小
ndf = 64          # 判别器中的特征图大小
num_epochs = 5    # 训练的总轮数
lr    = 0.0002    # 学习率
beta1 = 0.5       # Adam优化器的Beta1超参数

3、导入数据

# 创建数据集
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                           transforms.Resize(image_size),        # 调整图像大小
                           transforms.CenterCrop(image_size),    # 中心裁剪图像
                           transforms.ToTensor(),                # 将图像转换为张量
                           transforms.Normalize((0.5, 0.5, 0.5), # 标准化图像张量
                                                (0.5, 0.5, 0.5)),
                           ]))

# 创建数据加载器
dataloader = torch.utils.data.DataLoader(dataset, 
                                         batch_size=batch_size,  # 批量大小
                                         shuffle=True,           # 是否打乱数据集
                                         num_workers=5 # 使用多个线程加载数据的工作进程数
                                        )

# 选择要在哪个设备上运行代码
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
print("使用的设备是:",device)

# 绘制一些训练图像
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:24], 
                                         padding=2, 
                                         normalize=True).cpu(),(1,2,0)))

在这里插入图片描述

四、定义模型

在这里插入图片描述

1、定义训练参数

criterion = nn.BCELoss()

fixed_noise = torch.randn(64, nz, 1, 1,device=device)
real_label = 1.
fake_label = 0.

# 为生成器(G)和判别器( D)设置Adam优化器
optimizerD = optim.Adam(netD.parameters(),lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(),lr=lr, betas=(beta1, 0.999))

2、训练模型

img_list = []  # 用于存储生成的图像列表
G_losses = []  # 用于存储生成器的损失列表
D_losses = []  # 用于存储判别器的损失列表
iters = 0  # 迭代次数
print("Starting Training Loop...")
for epoch in range(num_epochs ):
    for i, data in enumerate(dataloader, 0):
        netD.zero_grad()
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
        output = netD(real_cpu).view(-1)
        errD_real = criterion(output, label)
        errD_real.backward()
        D_x = output.mean().item()
        
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        fake = netG(noise)
        label.fill_(fake_label)
        output = netD(fake.detach( )).view(-1)
        errD_fake = criterion(output, label)
        errD_fake.backward()
        D_G_z1 = output.mean().item()
        errD = errD_real + errD_fake
        optimizerD.step()
        
        netG.zero_grad()
        label.fill_(real_label)
        output = netD(fake).view(-1)
        errG = criterion(output, label)
        errG.backward()
        D_G_z2 = output.mean().item()
        optimizerG.step()
        
        if i % 400 == 0:
            print('[%d/%d][%d/%d]\tLoss_D:%.4f\tLoss_G:%.4f\tD(x):%.4f\tD(G(z)):%.4f / %.4f'
                 % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
        
        G_losses.append(errG.item())
        D_losses.append(errD.item())
        
        if(iters % 500 == 0) or ((epoch == num_epochs - 1) and(i == len(dataloader) - 1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
            
        iters += 1

3、可视化

plt.figure(figsize=(10, 5))
plt.title('Generator and Discriminator Loss During Training')
plt.plot(G_losses, label='G')
plt.plot(D_losses, label='D')
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.legend()
plt.show()

在这里插入图片描述

fig = plt.figure(figsize=(8, 8))
plt.axis('off')

ims = [[plt.imshow(np.transpose(i, (1, 2, 0)), animated=True)] for i in img_list]
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)

HTML(ani.to_jshtml())

在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值