一文搞清楚遗传算法(Genetic Algorithm,GA)详解,附带应用及源码

遗传算法(Genetic Algorithm, GA)是一种模拟达尔文生物进化过程的优化算法,通常用于解决复杂的优化问题,由美国的 John holland于20世纪70年代提出,它基于自然选择和遗传学的原理,通过模拟自然界中的生物进化过程来搜索最优解或近似最优解。

算法基本原理

遗传算法的基本原理借鉴了自然界中的生物进化过程,主要包括选择(Selection)、交叉(Crossover)和变异(Mutation)三大操作。这些操作模拟了自然选择和遗传变异的过程,帮助算法在搜索空间中逐步逼近最优解。通过模拟自然进化过程来搜索最优解的优化算法,其基本原理是将问题的解表示为一个染色体,然后通过选择、交叉和变异等操作来优化染色体。步骤如下:
1、参数及种群初始化:设置种群大小、最大迭代次数、搜索空间维度等,并随机初始化种群。
2、解码与适应度计算:对种群中的个体进行解码并计算适应度值。
3、选择、交叉与变异:选择父代个体,进行交叉和变异操作,生成子代。
4、结束条件判断:检查是否满足结束条件,如达到最大迭代次数或找到满意的解。
5、输出最优解:输出全局最优解。

种群初始化

种群(Population):由一组个体(Individual)组成,每个个体代表一个潜在解。个体通常用染色体(Chromosome)表示,即基因(染色体)是由一定长度的0或1组成。
初始化:随机生成一组初始解的染色体构成初始种群,种群的大小一般设为固定值。遗传算法的编码方式包括二进制编码、格雷编码、实数编码、排列编码等。其中二进制编码是应用最为广泛的一种编码方式。在二进制编码中,每个基因的取值为0或1,染色体长度由基因数目决定。

%% 编码函数
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值

flag=0;
while flag==0
    pick=rand(1,lenchrom);
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
    flag=test(lenchrom,bound,ret);             %检验染色体的可行性
end
end

NO.3|选择(Selection)

根据个体的适应度值选择父代个体,适应度高的个体被选中的概率较大。轮盘赌选择:根据个体的适应度值分配选择概率,属于随机抽样方式的一种。随机竞争选择:选择两个个体,保留适应度值较高的个体。

NO.4|交叉(Crossover)

单点交叉:在染色体的某一点进行交换。
多点交叉:在染色体的多个点进行交换。
均匀交叉:在整个染色体范围内进行交换
具体应用

通过一个具体的例子来说明如何使用这个遗传算法来进行参数识别 Q ^{\mathrm{Q}} Q。假设我们要识别一个简单的二次函数 f ( x ) = a ⋅ x 2 + b ⋅ x + c f(x)=a\cdot x^2+b\cdot x+c f(x)=ax2+bx+c的参数a、b和c,使得这个函数尽可能接近给定的一组数据点, 运行结果附后
(1)问题描述
我们有一组数据点 ( x i , y i ) (x_i,y_i) (x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小狂人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值