计算机控制技术——温控系统大林算法控制器设计实验

  1. 一、实验目的与要求:

    (1) 掌握大林控制算法原理;

    (2) 自行开发大林控制算法工程并实验,加深对大林算法的理解;

    (3) 测试并分析各种不同参数对控制效果的影响;

    (4) 基于大林控制算法,完成温度控制系统的仿真分析和实时控制研究。

    二、实验原理:

    大林算法控制目标是:设计合适的数字控制器,使整个闭环系统的传递函数为带有纯滞后的一阶惯性环节,且要求闭环系统的纯滞后时间等于对象的纯滞后时间,即:

                               (4.12)

    考虑到零阶保持器的作用,整个系统的闭环脉冲传递函数可由下式导出:

                          (4.13)

    被控对象数学模型为一阶惯性环节:

                              (4.14)

    其广义对象的脉冲传递函数为:

                          (4.15)

    根据闭环传递函数推导出数字控制器的脉冲传递函数5

                           (4.16)

    按照上式设计数字控制器即可实现大林控制算法控制。

    三、实验过程及内容:

    首先使用Simulink搭建大林算法控制模型,具体模型(图4.6)所示:可以得到图4.7所示的仿真曲线,通过曲线我们可以看到温度无超调。

    图4.6 大林仿真模块

    图4.7 仿真曲线

    打开KEIL软件建立工程,名为温度大林,大林控制算法核心代码如图4.8,编写好的大林算法代码后经过编译无误后将该工程下的wd.hex文件下载到目标板中,通过上位机观察实际的控制曲线,控制曲线如4.9所示,发现温度明显无超调(默认设定值35度)。但是稳态值存在一定的误差。需进一步的进行功能化改进。

    int DL_Control(float reftemp,float realtemp)

    {

     int duty_err;

         SetTemp = reftemp;

     ActualTemp = realtemp;

         err = SetTemp-ActualTemp;

     duty_err = 0.99898 * ux[0] + 0.0049875 * ux[30] + 30.56 * err - 30.53 * err_next;

     err_last = err_next;

         err_next = err;

     for(i = 34; i > 0; i--)

     {

      ux[i] = ux[i - 1];

         }

         ux[i] = duty_err;  

     if(duty_err > 250)

     {

    duty_err = 255;

         }

     if(duty_err < 0)

     {

    duty_err = 0;

     }

         return duty_err;

    }

    图4.8  大林算法核心代码

    图4.9  实际控制曲线

    、实验结果

    本次实验所用温度模块的传递函数为:

    根据计算可得数字控制器的脉冲传递函数为:

    建模系统如下:

    仿真结果曲线如下:

    实际运行曲线如下:

    控制效果分析:通过仿真曲线和实际曲线可以看出,大林控制算法有着很高的响应速度并且稳定性也非常不错。另外大林控制算法还能实现实时自适应性控制。

    、实验总结与思考题

    1. 思考题
    1. 什么是大林控制算法?

    大林控制算法 (DLM: Dynamic Linear Models) 是一种基于线性状态空间模型的统计方法,用于对随时间变化的数据进行建模和预测。它将观测值分解为由高度结构化的系统和关系决定的状态序列和与状态相关的观测噪声。 在该模型中,状态变量描述了系统真实的未知状态,并且通过时间变化而发生。

    1. 大林控制应用在什么控制环境下?

    a.反应堆保护系统 b.电力系统  c.航天与飞行器系统 d.医疗设备医疗设备

    (3)闭环传递函数的时间常数对控制效果有怎样的影响,为什么?

    影响:当时间常数较小时,闭环系统的响应速度较快可以更加迅速地对输入发生变化做出响应,在动态性能和稳态误差方面表现优异。因此,在采用大林算法进行控制设计时,通常会将时间常数设置得尽可能小。另一方面,当时间常数较大时,闭环系统的响应速度较慢,系统的动态性能会受到影响,但同时也可以帮助减少稳态误差。

    原因:这是因为时间常数反映了闭环系统中信号传输的速度,即系统在对输入发生变化时的响应速度。

<think>好的,用户想在Simulink中实现大林算法,我需要先回顾一下大林算法的基本原理。大林算法是一种用于时滞系统的控制方法,主要设计目标是使闭环系统的响应类似于一阶惯性环节加上纯滞后,这样可以避免振铃现象。用户可能需要了解如何在Simulink中搭建这样的控制系统模型。 首先,我应该确认大林算法的数学模型。大林算法控制器设计基于对象的传递函数,特别是针对具有时滞的一阶或二阶惯性环节。例如,对象模型可能是$G(s) = \frac{K e^{-\theta s}}{T s + 1}$,其中θ是时滞时间。大林控制器设计目标是让整个闭环传递函数也包含相同的时滞,从而消除振铃。 接下来,用户需要知道如何在Simulink中实现这个算法。可能需要使用传递函数模块、时滞模块以及离散化处理,因为大林算法通常在离散时间下应用。需要指导用户如何将连续模型转换为离散形式,选择合适的采样时间,并搭建闭环控制系统。 然后,示例模型的步骤是关键。用户可能需要分步骤创建模型:添加零阶保持器、对象模型、时滞模块,以及反馈回路。还需要配置控制器参数,可能涉及数字滤波器的设计,比如使用Discrete Filter模块来实现大林控制器的离散传递函数。 另外,用户可能对参数整定和仿真结果分析有疑问,所以需要提及如何调整参数和观察响应曲线。还要注意可能的问题,比如振铃现象的处理,以及如何通过调整控制器参数来避免。 最后,生成相关问题时,需要考虑用户可能的后续疑问,比如参数调整方法、振铃消除、离散化影响以及与其他控制算法的比较。这些问题可以帮助用户深入理解大林算法的实现和应用。 需要确保回答中使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,并检查语法正确性。同时,引用示例中的Simulink步骤,添加引用标识[^1]。</think>### Simulink中实现大林算法的步骤 大林算法(Dahlin Algorithm)是一种针对时滞系统的控制策略,其核心思想是通过数字控制器设计使闭环系统响应接近一阶惯性环节加纯滞后的特性。以下为具体实现步骤: --- #### 1. **数学模型建立** 大林算法控制器设计基于对象模型。假设被控对象为: $$ G_p(s) = \frac{K e^{-\theta s}}{T s + 1} $$ 其中,$K$为增益,$T$为时间常数,$\theta$为时滞时间。 控制目标是将闭环传递函数设计为: $$ G_{cl}(s) = \frac{e^{-\theta s}}{\lambda s + 1} $$ 其中$\lambda$为期望的时间常数[^1]。 --- #### 2. **Simulink建模流程** **步骤 1:创建新模型** - 新建Simulink模型,添加以下模块: - `Zero-Order Hold`(零阶保持器,用于离散化) - `Transfer Function`(对象模型) - `Transport Delay`(时滞模块) - `Discrete Filter`(大林控制器) - `Step`(阶跃输入)和`Scope`(输出观测) **步骤 2:配置控制器参数** 大林控制器的离散传递函数为: $$ D(z) = \frac{(1 - e^{-T_s/\lambda}) z^{-N-1}}{K (1 - e^{-T_s/T}) (1 - e^{-T_s/\lambda} z^{-1})} $$ 其中$T_s$为采样时间,$N = \theta / T_s$(取整数)。需在`Discrete Filter`中设置分子分母系数。 **步骤 3:连接模块** 按闭环控制结构连接: `Step → Zero-Order Hold → Discrete Filter → Transport Delay → Transfer Function → Scope` 同时添加反馈回路至控制器输入端。 --- #### 3. **参数整定与仿真** - 设置采样时间$T_s$,需满足$T_s < \theta/2$。 - 调整$\lambda$值:较小的$\lambda$会加快响应,但可能引起超调。 - 运行仿真后,通过`Scope`观察输出是否接近一阶惯性+滞后的响应曲线。 --- #### 4. **示例模型关键代码** ```matlab % 设置大林控制器参数(假设K=1, T=2, θ=1, λ=0.5) Ts = 0.1; N = floor(1 / Ts); num = (1 - exp(-Ts/0.5)) * [zeros(1, N+1), 1]; den = 1 * (1 - exp(-Ts/2)) * [1, -exp(-Ts/0.5)]; ``` --- #### 5. **注意事项** - 若出现振铃现象(Ringing),需在控制器中加入修正因子或调整$\lambda$。 - 对象模型为高阶时,需先简化为低阶+时滞形式。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零里小斯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值