目录
1.实现一些传统边缘检测算子,如:Roberts、Prewitt、Sobel、Scharr、Kirsch、Robinson、Laplacian
卷积神经网络(Convolutional Neural Network,CNN)
- 受生物学上感受野机制的启发而提出。
- 一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络
- 有三个结构上的特性:局部连接、权重共享、汇聚。
- 具有一定程度上的平移、缩放和旋转不变性。
- 和前馈神经网络相比,卷积神经网络的参数更少。
- 主要应用在图像和视频分析的任务上,其准确率一般也远远超出了其他的神经网络模型。
- 近年来卷积神经网络也广泛地应用到自然语言处理、推荐系统等领域。
5.1 卷积
5.1.1 二维卷积运算
import torch
import torch.nn as nn
class Conv2D(nn.Module):
def __init__(self, kernel_size,
weight_attr = nn.Parameter(torch.FloatTensor([[0., 1.],[2., 3.]]))):
super(Conv2D, self).__init__()
self.weight = weight_attr
def forward(self, X):
"""
输入:
- X:输入矩阵,shape=[B, M, N],B为样本数量
输出:
- output:输出矩阵
"""
u, v = self.weight.shape
output = torch.zeros([X.shape[0], X.shape[1] - u + 1, X.shape[2] - v + 1])
for i in range(output.shape[1]):
for j in range(output.shape[2]):
output[:, i, j] = torch.sum(X[:, i:i+u, j:j+v]*self.weight, axis=[1,2])
return output
# 随机构造一个二维输入矩阵
inputs = torch.tensor([[[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]]])
conv2d = Conv2D(kernel_size=2)
outputs = conv2d(inputs)
print("input: {}, \noutput: {}".format(inputs, outputs))
5.1.3 二维卷积的参数量和计算量
参数量
由于二维卷积的运算方式为在一个图像(或特征图)上滑动一个卷积核,通过卷积操作得到一组新的特征。所以参数量仅仅与卷积核的尺寸有关,对于一个输入矩阵和一个滤波器,卷积核的参数量为U×V。
假设有一幅大小为32×32的图像,如果使用全连接前馈网络进行处理,即便第一个隐藏层神经元个数为1,此时该层的参数量也高达1025个,此时该层的计算过程如图所示。
可以想像,随着隐藏层神经元数量的变多以及层数的加深,使用全连接前馈网络处理图像数据时,参数量会急剧增加。
如果使用卷积进行图像处理,当卷积核为3×3时,参数量仅为9,相较于全连接前馈网络,参数量少了非常多。
计算量
在卷积神经网络中运算时,通常会统计网络总的乘加运算次数作为计算量(FLOPs,floating point of operations),来衡量整个网络的运算速度。对于单个二维卷积,计算量的统计方式为:
其中M′×N′表示输出特征图的尺寸,即输出特征图上每个点都要与卷积核进行U×V次乘加运算。对于一幅大小为32×32的图像,使用3×3的卷积核进行运算可以得到以下的输出特征图尺寸:
此时,计算量为:
5.1.4 感受野
输出特征图上每个点的数值,是由输入图片上大小为U×V的区域的元素与卷积核每个元素相乘再相加得到的,所以输入图像上U×V区域内每个元素数值的改变,都会影响输出点的像素值。我们将这个区域叫做输出特征图上对应点的感受野。感受野内每个元素数值的变动,都会影响输出点的数值变化。比如3×3卷积对应的感受野大小就是3×3,如 图5.4 所示。
而当通过两层3×3的卷积之后,感受野的大小将会增加到5×5,如 图5.5 所示。
因此,当增加卷积网络深度的同时,感受野将会增大,输出特征图中的一个像素点将会包含更多的图像语义信息。
5.1.5 卷积的变种
在卷积的标准定义基础上,还可以引入卷积核的滑动步长和零填充来增加卷积的多样性,从而更灵活地进行特征抽取。
5.1.5.1 步长(Stride)
在卷积运算的过程中,有时会希望跳过一些位置来降低计算的开销,也可以把这一过程看作是对标准卷积运算输出的下采样。
在计算卷积时,可以在所有维度上每间隔S个元素计算一次,S称为卷积运算的步长(Stride),也就是卷积核在滑动时的间隔。
此时,对于一个输入矩阵和一个滤波器,它们的卷积为
在二维卷积运算中,当步长S=2时,计算过程如 图5.6 所示。
5.1.5.2 零填充(Zero Padding)
在卷积运算中,还可以对输入用零进行填充使得其尺寸变大。根据卷积的定义,如果不进行填充,当卷积核尺寸大于1时,输出特征会缩减。对输入进行零填充则可以对卷积核的宽度和输出的大小进行独立的控制。
在二维卷积运算中,零填充(Zero Padding)是指在输入矩阵周围对称地补上P个0。图5.7 为使用零填充的示例。
对于一个输入矩阵和一个滤波器,步长为S,对输入矩阵进行零填充,那么最终输出矩阵大小则为
引入步长和零填充后的卷积,参数量和计算量的统计方式与之前一致,参数量与卷积核的尺寸有关,为:U×V,计算量与输出特征图和卷积核的尺寸有关,为:
一般常用的卷积有以下三类:
1.窄卷积:步长S=1,两端不补零P=0,卷积后输出尺寸为:
M′=M−U+1
N'=N-V+1
2.宽卷积:步长S=1,两端补零P=U−1=V−1,卷积后输出尺寸为:
M′=M+U−1
N′=N+V−1
3.等宽卷积:步长S=1,两端补零P=(U−1)2=(V−1)2,卷积后输出尺寸为:
M′=M
N′=N
通常情况下,在层数较深的卷积神经网络,比如:VGG、ResNet中,会使用等宽卷积保证输出特征图的大小不会随着层数的变深而快速缩减。例如:当卷积核的大小为3×3时,会将步长设置为S=1,两端补零P=1,此时,卷积后的输出尺寸就可以保持不变。在本章后续的案例中,会使用ResNet进行实验。
5.1.6 带步长和零填充的二维卷积算子
引入步长和零填充后,二维卷积算子代码实现如下:
class Conv2D(nn.Module):
def __init__(self, kernel_size, stride=1, padding=0,weight_attr=False):
super(Conv2D, self).__init__()
weight_attr = torch.ones(size=[kernel_size,kernel_size])
torch.nn.init.constant_(weight_attr,1.0)
self.weight = torch.nn.Parameter(weight_attr)
# 步长
self.stride = stride
# 零填充
self.padding = padding
def forward(self, X):
# 零填充
new_X = torch.zeros([X.shape[0], X.shape[1]+2*self.padding, X.shape[2]+2*self.padding])
new_X[:, self.padding:X.shape[1]+self.padding, self.padding:X.shape[2]+self.padding] = X
u, v = self.weight.shape
output_w = (new_X.shape[1] - u) // self.stride + 1
output_h = (new_X.shape[2] - v) // self.stride + 1
output = torch.zeros([X.shape[0], output_w, output_h])
for i in range(0, output.shape[1]):
for j in range(0, output.shape[2]):
output[:, i, j] = torch.sum(
new_X[:, self.stride*i:self.stride*i+u, self.stride*j:self.stride*j+v]*self.weight,
axis=[1,2])
return output
inputs = torch.randn(size=[2, 8, 8])
conv2d_padding = Conv2D(kernel_size=3, padding=1)
outputs = conv2d_padding(inputs)
print("When kernel_size=3, padding=1 stride=1, input's shape: {}, output's shape: {}".format(inputs.shape, outputs.shape))
conv2d_stride = Conv2D(kernel_size=3, stride=2, padding=1)
outputs = conv2d_stride(inputs)
print("When kernel_size=3, padding=1 stride=2, input's shape: {}, output's shape: {}".format(inputs.shape, outputs.shape))
从输出结果看出,使用3×3大小卷积,padding
为1,当stride
=1时,模型的输出特征图可以与输入特征图保持一致;当stride
=2时,输出特征图的宽和高都缩小一倍。
5.1.7 使用卷积运算完成图像边缘检测任务
在图像处理任务中,常用拉普拉斯算子对物体边缘进行提取,拉普拉斯算子为一个大小为3×3的卷积核,中心元素值是8,其余元素值是−1。
考虑到边缘其实就是图像上像素值变化很大的点的集合,因此可以通过计算二阶微分得到,当二阶微分为0时,像素值的变化最大。此时,对x方向和y方向分别求取二阶导数:
完整的二阶微分公式为:
上述公式也被称为拉普拉斯算子,对应的二阶微分卷积核为:
对上述算子全部求反也可以起到相同的作用,此时,该算子可以表示为:
也就是一个点的四邻域拉普拉斯的算子计算结果是自己像素值的四倍减去上下左右的像素的和,将这个算子旋转45°后与原算子相加,就变成八邻域的拉普拉斯算子,也就是一个像素自己值的八倍减去周围一圈八个像素值的和,做为拉普拉斯计算结果,此时,该算子可以表示为:
下面我们利用上面定义的Conv2D
算子,构造一个简单的拉普拉斯算子,并对一张输入的灰度图片进行边缘检测,提取出目标的外形轮廓。
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
# 读取图片
img = Image.open('number.png').convert('L')
img.resize((256,256))
# 设置卷积核参数
w = np.array([[-1,-1,-1], [-1,8,-1], [-1,-1,-1]], dtype='float32')
# 创建卷积算子,卷积核大小为3x3,并使用上面的设置好的数值作为卷积核权重的初始化参数
conv = Conv2D(kernel_size=3, stride=1, padding=0, weight_attr=torch.tensor(w))
# 将读入的图片转化为float32类型的numpy.ndarray
inputs = np.array(img).astype('float32')
print("bf to_tensor, inputs:",inputs)
# 将图片转为Tensor
inputs = torch.tensor(inputs)
print("bf unsqueeze, inputs:",inputs)
inputs = torch.unsqueeze(inputs, axis=0)
print("af unsqueeze, inputs:",inputs)
outputs = conv(inputs)
# outputs = outputs.detach().numpy()
# 可视化结果
plt.figure(figsize=(8, 4))
f = plt.subplot(121)
f.set_title('input image', fontsize=15)
plt.imshow(img)
f = plt.subplot(122)
f.set_title('output feature map', fontsize=15)
plt.imshow(outputs.detach().numpy().squeeze(), cmap='gray')
plt.savefig('conv-vis.pdf')
plt.show()
从输出结果看,使用拉普拉斯算子,目标的边缘可以成功被检测出来。
选做题
1.实现一些传统边缘检测算子,如:Roberts、Prewitt、Sobel、Scharr、Kirsch、Robinson、Laplacian
构建通用的边缘检测算子
import os
import cv2
import matplotlib.pyplot as plt
import torch
from PIL import Image
import numpy as np
import torch
import torch.nn as nn
class EdgeOP(nn.Module):
def __init__(self, kernel):
'''
kernel: shape(out_channels, in_channels, h, w)
'''
super(EdgeOP, self).__init__()
out_channels, in_channels, h, w = kernel.shape
self.filter = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(h, w),
padding='same', )
self.filter.weight.data = torch.tensor(kernel,dtype=torch.float32)
@staticmethod
def postprocess(outputs, mode=0, weight=None):
'''
Input: NCHW
Output: NHW(mode==1-3) or NCHW(mode==4)
Params:
mode: switch output mode(0-4)
weight: weight when mode==3
'''
if mode == 0:
results = torch.sum(torch.abs(outputs), dim=1)
elif mode == 1:
results = torch.sqrt(torch.sum(torch.pow(outputs, 2), dim=1))
elif mode == 2:
results = torch.max(torch.abs(outputs), dim=1)[0]
elif mode == 3:
if weight is None:
C = outputs.shape[1]
weight = torch.tensor([1 / C] * C, dtype=torch.float32)
else:
weight = torch.tensor(weight, dtype=torch.float32)
results = torch.einsum('nchw, c -> nhw', torch.abs(outputs), weight)
elif mode == 4:
results = torch.abs(outputs)
return torch.clip(results, 0, 255).to(torch.uint8)
@torch.no_grad()
def forward(self, images, mode=0, weight=None):
outputs = self.filter(images)
return self.postprocess(outputs, mode, weight)
图像边缘检测测试函数
- 为了方便测试就构建了如下的测试函数,测试同一张图片不同算子/不同边缘强度计算方法的边缘检测效果
def test_edge_det(kernel, img_path='test.jpg'):
img = cv2.imread(img_path, 0)
img_tensor = torch.tensor(img, dtype=torch.float32)[None, None, ...]
op = EdgeOP(kernel)
all_results = []
for mode in range(4):
results = op(img_tensor, mode=mode)
all_results.append(results.numpy()[0])
results = op(img_tensor, mode=4)
for result in results.numpy()[0]:
all_results.append(result)
return all_results, np.concatenate(all_results, 1)
roberts_kernel = np.array([
[[
[1, 0],
[0, -1]
]],
[[
[0, -1],
[1, 0]
]]
])
_, concat_res = test_edge_det(roberts_kernel)
Image.fromarray(concat_res)
prewitt_kernel = np.array([
[[
[-1, -1, -1],
[ 0, 0, 0],
[ 1, 1, 1]
]],
[[
[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]
]],
[[
[ 0, 1, 1],
[-1, 0, 1],
[-1, -1, 0]
]],
[[
[ -1, -1, 0],
[ -1, 0, 1],
[ 0, 1, 1]
]]
])
_, concat_res = test_edge_det(prewitt_kernel)
Image.fromarray(concat_res)
sobel_kernel = np.array([
[[
[-1, -2, -1],
[ 0, 0, 0],
[ 1, 2, 1]
]],
[[
[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]
]],
[[
[ 0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]
]],
[[
[ -2, -1, 0],
[ -1, 0, 1],
[ 0, 1, 2]
]]
])
_, concat_res = test_edge_det(sobel_kernel)
Image.fromarray(concat_res)
scharr_kernel = np.array([
[[
[-3, -10, -3],
[ 0, 0, 0],
[ 3, 10, 3]
]],
[[
[-3, 0, 3],
[-10, 0, 10],
[-3, 0, 3]
]],
[[
[ 0, 3, 10],
[-3, 0, 3],
[-10, -3, 0]
]],
[[
[ -10, -3, 0],
[ -3, 0, 3],
[ 0, 3, 10]
]]
])
_, concat_res = test_edge_det(scharr_kernel)
Image.fromarray(concat_res)
Krisch_kernel = np.array([
[[
[5, 5, 5],
[-3,0,-3],
[-3,-3,-3]
]],
[[
[-3, 5,5],
[-3,0,5],
[-3,-3,-3]
]],
[[
[-3,-3,5],
[-3,0,5],
[-3,-3,5]
]],
[[
[-3,-3,-3],
[-3,0,5],
[-3,5,5]
]],
[[
[-3, -3, -3],
[-3,0,-3],
[5,5,5]
]],
[[
[-3, -3, -3],
[5,0,-3],
[5,5,-3]
]],
[[
[5, -3, -3],
[5,0,-3],
[5,-3,-3]
]],
[[
[5, 5, -3],
[5,0,-3],
[-3,-3,-3]
]],
])
_, concat_res = test_edge_det(Krisch_kernel)
Image.fromarray(concat_res)
robinson_kernel = np.array([
[[
[1, 2, 1],
[0, 0, 0],
[-1, -2, -1]
]],
[[
[0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]
]],
[[
[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]
]],
[[
[-2, -1, 0],
[-1, 0, 1],
[0, 1, 2]
]],
[[
[-1, -2, -1],
[0, 0, 0],
[1, 2, 1]
]],
[[
[0, -1, -2],
[1, 0, -1],
[2, 1, 0]
]],
[[
[1, 0, -1],
[2, 0, -2],
[1, 0, -1]
]],
[[
[2, 1, 0],
[1, 0, -1],
[0, -1, -2]
]],
])
_, concat_res = test_edge_det(robinson_kernel)
Image.fromarray(concat_res)
laplacian_kernel = np.array([
[[
[1, 1, 1],
[1, -8, 1],
[1, 1, 1]
]],
[[
[0, 1, 0],
[1, -4, 1],
[0, 1, 0]
]]
])
_, concat_res = test_edge_det(laplacian_kernel)
Image.fromarray(concat_res)
2.实现的简易的 Canny 边缘检测算法
基于 OpenCV 实现快速的 Canny 边缘检测
- 在 OpenCV 中只需要使用 cv2.Canny 函数即可实现 Canny 边缘检测
import cv2
import numpy as np
from PIL import Image
lower = 30 # 最小阈值
upper = 70 # 最大阈值
img_path = '1-2.jpg' # 指定测试图像路径
gray = cv2.imread(img_path, 0) # 读取灰度图像
edge = cv2.Canny(gray, lower, upper) # Canny 图像边缘检测
contrast = np.concatenate([edge, gray], 1) # 图像拼接
Image.fromarray(contrast) # 显示图像
基于 Numpy 模块实现简单的 Canny 检测器
import cv2
import math
import numpy as np
from PIL import Image
def smooth(img_gray, kernel_size=5):
# 生成高斯滤波器
"""
要生成一个 (2k+1)x(2k+1) 的高斯滤波器,滤波器的各个元素计算公式如下:
H[i, j] = (1/(2*pi*sigma**2))*exp(-1/2*sigma**2((i-k-1)**2 + (j-k-1)**2))
"""
sigma1 = sigma2 = 1.4
gau_sum = 0
gaussian = np.zeros([kernel_size, kernel_size])
for i in range(kernel_size):
for j in range(kernel_size):
gaussian[i, j] = math.exp(
(-1 / (2 * sigma1 * sigma2)) *
(np.square(i - 3) + np.square(j-3))
) / (2 * math.pi * sigma1 * sigma2)
gau_sum = gau_sum + gaussian[i, j]
# 归一化处理
gaussian = gaussian / gau_sum
# 高斯滤波
img_gray = np.pad(img_gray, ((kernel_size//2, kernel_size//2), (kernel_size//2, kernel_size//2)), mode='constant')
W, H = img_gray.shape
new_gray = np.zeros([W - kernel_size, H - kernel_size])
for i in range(W-kernel_size):
for j in range(H-kernel_size):
new_gray[i, j] = np.sum(
img_gray[i: i + kernel_size, j: j + kernel_size] * gaussian
)
return new_gray
def gradients(new_gray):
"""
:type: image which after smooth
:rtype:
dx: gradient in the x direction
dy: gradient in the y direction
M: gradient magnitude
theta: gradient direction
"""
W, H = new_gray.shape
dx = np.zeros([W-1, H-1])
dy = np.zeros([W-1, H-1])
M = np.zeros([W-1, H-1])
theta = np.zeros([W-1, H-1])
for i in range(W-1):
for j in range(H-1):
dx[i, j] = new_gray[i+1, j] - new_gray[i, j]
dy[i, j] = new_gray[i, j+1] - new_gray[i, j]
# 图像梯度幅值作为图像强度值
M[i, j] = np.sqrt(np.square(dx[i, j]) + np.square(dy[i, j]))
# 计算 θ - artan(dx/dy)
theta[i, j] = math.atan(dx[i, j] / (dy[i, j] + 0.000000001))
return dx, dy, M, theta
def NMS(M, dx, dy):
d = np.copy(M)
W, H = M.shape
NMS = np.copy(d)
NMS[0, :] = NMS[W-1, :] = NMS[:, 0] = NMS[:, H-1] = 0
for i in range(1, W-1):
for j in range(1, H-1):
# 如果当前梯度为0,该点就不是边缘点
if M[i, j] == 0:
NMS[i, j] = 0
else:
gradX = dx[i, j] # 当前点 x 方向导数
gradY = dy[i, j] # 当前点 y 方向导数
gradTemp = d[i, j] # 当前梯度点
# 如果 y 方向梯度值比较大,说明导数方向趋向于 y 分量
if np.abs(gradY) > np.abs(gradX):
weight = np.abs(gradX) / np.abs(gradY) # 权重
grad2 = d[i-1, j]
grad4 = d[i+1, j]
# 如果 x, y 方向导数符号一致
# 像素点位置关系
# g1 g2
# c
# g4 g3
if gradX * gradY > 0:
grad1 = d[i-1, j-1]
grad3 = d[i+1, j+1]
# 如果 x,y 方向导数符号相反
# 像素点位置关系
# g2 g1
# c
# g3 g4
else:
grad1 = d[i-1, j+1]
grad3 = d[i+1, j-1]
# 如果 x 方向梯度值比较大
else:
weight = np.abs(gradY) / np.abs(gradX)
grad2 = d[i, j-1]
grad4 = d[i, j+1]
# 如果 x, y 方向导数符号一致
# 像素点位置关系
# g3
# g2 c g4
# g1
if gradX * gradY > 0:
grad1 = d[i+1, j-1]
grad3 = d[i-1, j+1]
# 如果 x,y 方向导数符号相反
# 像素点位置关系
# g1
# g2 c g4
# g3
else:
grad1 = d[i-1, j-1]
grad3 = d[i+1, j+1]
# 利用 grad1-grad4 对梯度进行插值
gradTemp1 = weight * grad1 + (1 - weight) * grad2
gradTemp2 = weight * grad3 + (1 - weight) * grad4
# 当前像素的梯度是局部的最大值,可能是边缘点
if gradTemp >= gradTemp1 and gradTemp >= gradTemp2:
NMS[i, j] = gradTemp
else:
# 不可能是边缘点
NMS[i, j] = 0
return NMS
def double_threshold(NMS, threshold1, threshold2):
NMS = np.pad(NMS, ((1, 1), (1, 1)), mode='constant')
W, H = NMS.shape
DT = np.zeros([W, H])
# 定义高低阈值
TL = threshold1 * np.max(NMS)
TH = threshold2 * np.max(NMS)
for i in range(1, W-1):
for j in range(1, H-1):
# 双阈值选取
if (NMS[i, j] < TL):
DT[i, j] = 0
elif (NMS[i, j] > TH):
DT[i, j] = 1
# 连接
elif ((NMS[i-1, j-1:j+1] < TH).any() or
(NMS[i+1, j-1:j+1].any() or
(NMS[i, [j-1, j+1]] < TH).any())):
DT[i, j] = 1
return DT
def canny(gray, threshold1, threshold2, kernel_size=5):
norm_gray = gray
gray_smooth = smooth(norm_gray, kernel_size)
dx, dy, M, theta = gradients(gray_smooth)
nms = NMS(M, dx, dy)
DT = double_threshold(nms, threshold1, threshold2)
return DT
import cv2
import numpy as np
from PIL import Image
lower = 0.1 # 最小阈值
upper = 0.3 # 最大阈值
img_path = '2.jpg' # 指定测试图像路径
gray = cv2.imread(img_path, 0) # 读取灰度图像
edge = canny(gray, lower, upper) # Canny 图像边缘检测
edge = (edge * 255).astype(np.uint8) # 反归一化
contrast = np.concatenate([edge, gray], 1) # 图像拼接
Image.fromarray(contrast).show()
基于Pytorch 实现的 Canny 边缘检测器
import torch
import torch.nn as nn
import math
import cv2
import numpy as np
from scipy.signal import gaussian
from PIL import Image
def get_state_dict(filter_size=5, std=1.0, map_func=lambda x: x):
generated_filters = gaussian(filter_size, std=std).reshape([1, filter_size]).astype(np.float32)
gaussian_filter_horizontal = generated_filters[None, None, ...]
gaussian_filter_vertical = generated_filters.T[None, None, ...]
sobel_filter_horizontal = np.array([[[
[1., 0., -1.],
[2., 0., -2.],
[1., 0., -1.]]]],
dtype='float32'
)
sobel_filter_vertical = np.array([[[
[1., 2., 1.],
[0., 0., 0.],
[-1., -2., -1.]]]],
dtype='float32'
)
directional_filter = np.array(
[[[[0., 0., 0.],
[0., 1., -1.],
[0., 0., 0.]]],
[[[0., 0., 0.],
[0., 1., 0.],
[0., 0., -1.]]],
[[[0., 0., 0.],
[0., 1., 0.],
[0., -1., 0.]]],
[[[0., 0., 0.],
[0., 1., 0.],
[-1., 0., 0.]]],
[[[0., 0., 0.],
[-1., 1., 0.],
[0., 0., 0.]]],
[[[-1., 0., 0.],
[0., 1., 0.],
[0., 0., 0.]]],
[[[0., -1., 0.],
[0., 1., 0.],
[0., 0., 0.]]],
[[[0., 0., -1.],
[0., 1., 0.],
[0., 0., 0.]]]],
dtype=np.float32
)
connect_filter = np.array([[[
[1., 1., 1.],
[1., 0., 1.],
[1., 1., 1.]]]],
dtype=np.float32
)
return {
'gaussian_filter_horizontal.weight': map_func(gaussian_filter_horizontal),
'gaussian_filter_vertical.weight': map_func(gaussian_filter_vertical),
'sobel_filter_horizontal.weight': map_func(sobel_filter_horizontal),
'sobel_filter_vertical.weight': map_func(sobel_filter_vertical),
'directional_filter.weight': map_func(directional_filter),
'connect_filter.weight': map_func(connect_filter)
}
class CannyDetector(nn.Module):
def __init__(self, filter_size=5, std=1.0, device='cpu'):
super(CannyDetector, self).__init__()
# 配置运行设备
self.device = device
# 高斯滤波器
self.gaussian_filter_horizontal = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(1, filter_size),
padding=(0, filter_size // 2), bias=False)
self.gaussian_filter_vertical = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(filter_size, 1),
padding=(filter_size // 2, 0), bias=False)
# Sobel 滤波器
self.sobel_filter_horizontal = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1, bias=False)
self.sobel_filter_vertical = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1, bias=False)
# 定向滤波器
self.directional_filter = nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3, padding=1, bias=False)
# 连通滤波器
self.connect_filter = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1, bias=False)
# 初始化参数
params = get_state_dict(filter_size=filter_size, std=std,
map_func=lambda x: torch.from_numpy(x).to(self.device))
self.load_state_dict(params)
@torch.no_grad()
def forward(self, img, threshold1=10.0, threshold2=100.0):
# 拆分图像通道
img_r = img[:, 0:1] # red channel
img_g = img[:, 1:2] # green channel
img_b = img[:, 2:3] # blue channel
# Step1: 应用高斯滤波进行模糊降噪
blur_horizontal = self.gaussian_filter_horizontal(img_r)
blurred_img_r = self.gaussian_filter_vertical(blur_horizontal)
blur_horizontal = self.gaussian_filter_horizontal(img_g)
blurred_img_g = self.gaussian_filter_vertical(blur_horizontal)
blur_horizontal = self.gaussian_filter_horizontal(img_b)
blurred_img_b = self.gaussian_filter_vertical(blur_horizontal)
# Step2: 用 Sobel 算子求图像的强度梯度
grad_x_r = self.sobel_filter_horizontal(blurred_img_r)
grad_y_r = self.sobel_filter_vertical(blurred_img_r)
grad_x_g = self.sobel_filter_horizontal(blurred_img_g)
grad_y_g = self.sobel_filter_vertical(blurred_img_g)
grad_x_b = self.sobel_filter_horizontal(blurred_img_b)
grad_y_b = self.sobel_filter_vertical(blurred_img_b)
# Step2: 确定边缘梯度和方向
grad_mag = torch.sqrt(grad_x_r ** 2 + grad_y_r ** 2)
grad_mag += torch.sqrt(grad_x_g ** 2 + grad_y_g ** 2)
grad_mag += torch.sqrt(grad_x_b ** 2 + grad_y_b ** 2)
grad_orientation = (
torch.atan2(grad_y_r + grad_y_g + grad_y_b, grad_x_r + grad_x_g + grad_x_b) * (180.0 / math.pi))
grad_orientation += 180.0
grad_orientation = torch.round(grad_orientation / 45.0) * 45.0
# Step3: 非最大抑制,边缘细化
all_filtered = self.directional_filter(grad_mag)
inidices_positive = (grad_orientation / 45) % 8
inidices_negative = ((grad_orientation / 45) + 4) % 8
batch, _, height, width = inidices_positive.shape
pixel_count = height * width * batch
pixel_range = torch.Tensor([range(pixel_count)]).to(self.device)
indices = (inidices_positive.reshape((-1,)) * pixel_count + pixel_range).squeeze()
channel_select_filtered_positive = all_filtered.reshape((-1,))[indices.long()].reshape(
(batch, 1, height, width))
indices = (inidices_negative.reshape((-1,)) * pixel_count + pixel_range).squeeze()
channel_select_filtered_negative = all_filtered.reshape((-1,))[indices.long()].reshape(
(batch, 1, height, width))
channel_select_filtered = torch.stack([channel_select_filtered_positive, channel_select_filtered_negative])
is_max = channel_select_filtered.min(dim=0)[0] > 0.0
thin_edges = grad_mag.clone()
thin_edges[is_max == 0] = 0.0
# Step4: 双阈值
low_threshold = min(threshold1, threshold2)
high_threshold = max(threshold1, threshold2)
thresholded = thin_edges.clone()
lower = thin_edges < low_threshold
thresholded[lower] = 0.0
higher = thin_edges > high_threshold
thresholded[higher] = 1.0
connect_map = self.connect_filter(higher.float())
middle = torch.logical_and(thin_edges >= low_threshold, thin_edges <= high_threshold)
thresholded[middle] = 0.0
connect_map[torch.logical_not(middle)] = 0
thresholded[connect_map > 0] = 1.0
thresholded[..., 0, :] = 0.0
thresholded[..., -1, :] = 0.0
thresholded[..., :, 0] = 0.0
thresholded[..., :, -1] = 0.0
thresholded = (thresholded > 0.0).float()
return thresholded
lower = 2.5 # 最小阈值
upper = 5 # 最大阈值
img_path = 'test.jpg' # 指定测试图像路径
img = cv2.imread(img_path, 1) # 读取彩色图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转为灰度图
img = np.transpose(img, [2, 1, 0]) / 255.0 # 转置 + 归一化
img_tensor = torch.tensor(img[None, ...], dtype=torch.float32) # 转换为 Tensor
canny = CannyDetector() # 初始化 Canny 检测器
edge = canny(img_tensor, lower, upper) # Canny 图像边缘检测
edge = np.squeeze(edge.numpy()) # 去除 Batch dim
edge = np.transpose(edge, [1, 0]) # 图像转置
edge = (edge * 255).astype(np.uint8) # 反归一化
contrast = np.concatenate([edge, gray], 1) # 图像拼接
Image.fromarray(contrast).show()
心得体会
通过本次实验,首先对二维卷积运算及其代码实现有所掌握,再对带步长和零填充的二维卷积算子及其代码实现有了一定的认识,最后对不同算子对图像的边缘提取效果有所了解。通过公式编辑对二维卷积的参数量和计算量以及带步长和零填充的卷积计算公式的变换有所掌握。通过观察图片了解了感受野的概念以及卷积网络深度改变对感受野的影响。
参考
NNDL 实验5(上) - HBU_DAVID - 博客园 (cnblogs.com)