别再纠结了!一文带你搞懂Stable Diffusion的30种采样算法

一、Stable Diffusion和WebUI 的故事

今天咱们来聊聊Stable Diffusion和WebUI这对"神仙眷侣"的故事。
说起Stable Diffusion,它就像是AI界的"画圣",能把文字变成栩栩如生的图像。
这家伙的"祖宗"其实可以追溯到2010年代呢。那时候,科学家们就在琢磨怎么让机器学会"画画"。

2014年,DeepMind那帮小伙子搞出了个生成模型,可以说是给Stable Diffusion打下了基础。
然后呢,科学家们就开始日以继夜地折腾。终于在2021年,"潜在扩散模型"这个新玩意儿诞生了。
2022年8月,CompVis、Stability AI和LAION这三家单一合作,Stable Diffusion 1.0版诞生了。

这一下可了不得,整个AI界都沸腾了!Stability AI这家公司一下子成了香饽饽,很快就拿到了1.01亿美元的投资。
从那以后,Stable Diffusion就像打了鸡血一样,不停地进化。从1.5版到3.0版,每次更新都让人惊叹不已。
特别是2024年推出的3.0版,简直是太厉害了!不管是画面质量还是对文字的理解,都甩其他AI一大截。

img

说到这儿,咱们再来聊聊Stable Diffusion WebUI。这玩意儿可有意思了。
它是由一个越南小哥开发的,就是为了让咱们这些普通人也能轻松玩转Stable Diffusion。
这个WebUI界面是基于Gradio库做的,简单得很,用浏览器就能操作Stable Diffusion模型,不用写代码。
而且,这个界面还集成了各种功能,插件也是应有尽有。比如说ControlNet插件,能从图片中提取结构信息,让生成的图像更精确。

Stable Diffusion和WebUI这对组合,一个负责"画画",一个负责"给画笔",配合得多默契啊!
这不就是AI界的"神仙眷侣"嘛!它们一起,让我们这些普通人也能轻松变身"AI画家",想画啥就画啥。
记住啊,AI虽然厉害,但还是需要我们人类来驾驭它。所以,大家一起加油,学习新技术,拥抱AI时代!

二、Stable Diffusion WebUI界面认识

img

三、采样方法

什么是采样

说实话,刚接触这个概念的时候,我也是一头雾水。不过,仔细琢磨后发现,其实它没那么复杂。
简单来说,采样方法就是AI从一堆噪声中慢慢"提炼"出你想要的图像的过程。就像你在一堆杂乱的积木中,一步步拼出心中的城堡
不同的采样方法,就好比不同的拼积木策略。有的快但粗糙,有的慢但精细。选对了方法,就能让AI生成的图像更符合你的预期。
所以不同的采样直接影响了生成图像的质量和风格,了解这些方法,你就能让AI乖乖听话,画出你心中的那幅画。

采样对比

img

在Stable Diffusion的30种算法中,一些比较老旧的算法已经不再推荐使用,而一些新算法因其优越的性能而被广泛推荐。以下是详细的分类和推荐:

老式算法(传承百年)不推荐
算法相对简单,计算量小,求解精度一般,对初始条件敏感,易出现数值不稳定。

  • Euler 最简单的求解器。
  • Heun 比较优秀的精确速度更新的版本。
  • LMS (线性多步骤法) 速度与Euler相同但更稳健。

随机算法(带a或者SDE)
在每个采样步骤中都会向图像添加噪声。
Euler a, DPM2 a, DPM++ 2S a, DPM++ 2S a Karras, DPM++ SDE, DPM++ 2M SDE

不同采样器解析

  • DPM2二阶算法(准确但更慢)
  • DPM++ DPM的方法和策略能够提升采样质量和效率并取得了显著的提升。
  • UniPC 5-10个步骤生成还不错的图像。
  • Karras采样器 初始噪音高,生成图像质量高。

综合推荐

  • DPM++系列的算法表现优异,尤其是结合Karras和SDE(随机微分方程)的版本,能在速度和质量上取得良好平衡,一般使用DPM++ 2M Karras就可以
  • Euler a生成图像速度比DPM++快,但具有一定的随机性,有时会得到意想不到好的效果

四、示例

我们来看下选择不同的采样方法生成的图片的差别
选择majicmixRealistic写实大模型,写上正向提示词,反向提示词

img

img

img

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值