在 Stable Diffusion 模型中,采样方法是从学习到的概率分布中生成图像的算法。采样方法影响生成图像的质量、样式、速度以及过程的控制程度。以下是一些采样方法的概述和它们对图像生成可能产生的影响:
DPM++系列
- DPM++ 2M / 3M: 这些是扩展的扩散概率模型,其中数字表示模型使用的标记步数(例如2M表示200万步)。步数越多,通常生成的图像细节和质量越高,但需要更长的计算时间。
- DPM++ SDE: 指扩展的扩散概率模型结合了随机微分方程(SDE),提供了不同的扩散和逆扩散路径,可能带来更自然的图像生成过程。
- DPM++ SDE Karras / DPM++ 2M SDE Karras: 这些方法可能结合了由 Timo Aila 和 Samuli Laine 提出的扩展模型,以及随机微分方程和 Karras 等人提出的优化策略,以提高图像质量和生成速度。
- DPM++ SDE Exponential: 可能应用了指数积分策略在 SDE 中,影响扩散过程,可能导致生成图像的平滑程度和细节有所不同。
DDIM
- DDIM (Denoising Diffusion Implicit Models): 这是一种更快的采样方法,能够在更少的迭代次数下生成图像,通常会产生较为确定性的结果,适合需要快速反馈的场景。
PLMS
- PLMS (Pseudo Likelihood Markov Samp