今天分享的是一篇由英伟达发布的文章:
RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
RankRAG:在大模型中统一检索增强生成与上下文排序
论文链接:https://arxiv.org/pdf/2407.02485v1
摘要
本篇文章提出了一个新的指令微调框架RankRAG,该框架通过指令微调单个大型语言模型,使其同时具备上下文排序和答案生成的能力,从而提升检索增强生成任务的效率。文章在多个数据集进行了广泛测试,结果表明在多种任务上RankRAG相较于其他基线模型,展现出了更为卓越的性能表现。
RankRAG框架
RankRAG框架主要分为两个阶段:训练(Training)阶段与推理(Inference)阶段。其中训练阶段又可以分为:监督微调与统一指令调优排序和生成两个阶段,下面将详细介绍每个阶段。
1.训练阶段
1.1 监督微调(SFT)
作者使用高质量的指令遵循数据集对语言模型进行微调,提升了大语言模型(LLMs)的指令遵循能力,改善其在各种下游任务中的零样本表现。训练数据包括众包对话数据集、长篇问答数据集以及由LLM生成的指令数据集。
1.2 统一指令调优排序和生成
该阶段的重点在于通过统一指令调优,增强大语言模型(LLM)在排序和生成任务上的能力,特别是对于检索增强生成(RAG)任务的表现。该阶段包括五个关键部分的数据集和任务设计:
-
第一阶段的SFT数据:
这一部分是为了维护LLM的指令遵循能力。
-
丰富上下文的问答数据:
利用多个具有丰富上下文的问答任务来增强大语言模型(LLM)使用上下文进行生成的能力。训练数据集包括:
-
标准的问答和阅读理解数据集
-
对话式问答数据集
-
合成对话问答数据集
-
检索增强的问答数据:
为了提升模型对无关上下文的鲁棒性。作者采用了SQuAD和WebQuestions这两个数据集,这些数据集不仅包含答案上下文,还包括使用BM25检索到的最佳上下文。对于每个问题,作者将答案上下文与使用BM25检索到的最佳上下文结合,确保每个问题都能关联五个上下文。其中一些检索到的上下文可能不包含答案,这些被称为负样本。
-
上下文排序数据:
为提升LLM的上下文排序能力,作者使用了MS MARCO段落排序数据集。该数据集将问题-相关段落(q,c+)视为正例,而使用BM25检索到的困难负例段落(q,c-)视为负例。LLM需要根据问题判断段落是否与其相关,生成“True”或“False”。此外,由于针对对话问答的排名数据极为稀缺,作者利用对话问答对生成伪相关对,由于每个对话只与一个文档相关联,作者将每个文档切分为150字的片段。然后计算每个片段与真实答案之间的4-gram召回率,召回率高于0.5的片段被视为与对话相关,低于0.1的则被视为不相关。每个样本包含一个问题-上下文对用于该排序数据集。最终作者将两种数据结合,用于训练模型的上下文排序能力。
-
检索增强的排序数据:
为了提升模型同时评估多个上下文与问题相关性的能力,作者将SQuAD和WebQuestions中的答案上下文与BM25检索到的最佳上下文结合,确保每个问题能关联到五个上下文。其中包含答案的上下文被认为是相关的,训练LLM识别所有与问题相关的上下文。
作者将上述五部分的数据和任务成统一为标准化的问答格式 (x, c, y),其中 x 是问题,c 是上下文,y 是目标答案。表1展示了如何将不同任务转换为统一格式。这带来了以下好处:
-
通过增加相对较少的排序数据,增强了LLM的排序能力。
-
通过将这些任务标准化为统一格式,它们可以相互增强。
2.推理阶段
由于RankRAG包含了额外的重新排序步骤,因此每个问题的推理管道被修改为检索-重新排序-生成管道,描述如下:
-
检索器R首先从语料库中检索top-N上下文。
-
RankRAG模型计算问题与检索到的N个上下文之间的相关性分数,作为使用表1中的提示符生成答案为True的概率,然后对上下文重新排序,只保留前k个(k≪N)上下文,然后将其用作生成步骤的输入。
-
将top-k上下文与问题连接并反馈到RankRAG模型中,以生成最终答案。
总结
本文引入了一种创新的RAG框架,即RankRAG,该框架针对单个大型语言模型(LLM)进行了特定的指令微调,旨在同时增强其上下文排序与答案生成的能力。通过在训练过程中融合对上下文进行排名和生成答案的双重指令微调策略,RankRAG在实际应用场景中能够更为高效地筛选出相关上下文并有效利用这些信息,从而提升整体性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。