推理榜单更新:QwQ国内排名第一,与o1差距缩小

本测评结果仅用于学术研究。

11月28日,Qwen团队发布实验性研究模型QwQ-32B-Preview,专注于增强 AI 推理能力,目前为预览版本。

11月25日,上海AI实验室开放强推理模型书生InternThinker试用体验。该模型具备长思维能力,并能在推理过程中进行自我反思和纠正,从而在多种复杂推理任务上取得更优结果。

QwQ-32B-Preview访问地址:

https://huggingface.co/Qwen/QwQ-32B-Preview

InternThinker试用链接:

https://internlm-chat.intern-ai.org.cn

DeepSeek-R1-Lite-Preview体验地址:

https://chat.deepseek.com/

k0-math体验地址:

https://kimi.moonshot.cn

测评环境

评测模型:QwQ-32B-Preview、InternThinker

评测集:

1. SuperCLUE-CoT中文大模型链式推理评测集。不仅关注模型的解题过程和最终答案,还重点考察其构建思维链和反思能力。内容涵盖了物理、化学、生物等科学领域的问题以及编解码等挑战性问题。

2.SuperCLUE-Math6o奥林匹克数学竞赛(小学)评测集。覆盖小学奥数中常见7类问题:应用题、行程、数论、几何、计数、计算及奥数杂题。

测评方法:针对每一道推理题目,我们提供人工校验和核对后的参考答案和推理过程;然后根据设定的评估流程、评价标准和打分规则(1-5分),裁判模型对候选模型的答案进行评估。链式推理设定的评价标准包括:思维过程、解题过程、最终答案等。小学奥数设定的评价标准包括:结果正确性、逻辑清晰度、表达清晰度等。

先说结论

结论1:与 o1-preview相比,QwQ-32B-Preview在两大推理任务中的平均差距约为10分,缩小了国内外模型的差距。

结论2: 相比Qwen2.5-72b-instruct,QwQ-32B-Preview在两大推理任务中平均提升了18分。

结论3:与国内其他中文大模型相比,QwQ-32B-Preview当前链式推理中处于国内最好水平,在小学奥数中排行第二。

结论4:InternThinker在在两大推理任务中均表现突出,处于上游位置,得分均超过50分。

注:这两大推理任务,分别是小学奥数(math6o)的总分,以及链式推理(CoT)的总分。

测评结果

对比分析

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户遇到了令牌无权使用特定模型的问题,具体是“qwq:latest”模型。我需要先了解可能的原因,然后根据参考引用中的信息提供解决方案。 首先,用户提到使用的是One API的错误,请求ID是2025031215481788602376089653813。可能的问题包括令牌权限配置错误、模型名称不匹配、服务配置问题或者账户权限不足。根据引用[1]和[4],模型名称是QwQ-32B,而用户使用的令牌可能是针对其他模型的,或者模型名称输入有误。比如,用户可能输入了“qwq:latest”,但实际模型名称是“QwQ-32B”或者需要特定的标签。 接下来,检查模型下载是否正确。引用[1]提到使用ollama pull qwq,可能需要确认是否下载了正确的模型版本。此外,服务配置方面,引用[2]提到使用vllm服务运行模型,可能需要检查服务是否启动,端口是否正确,以及模型路径是否配置正确。 然后,令牌权限方面,需要确认令牌是否绑定了正确的模型,是否有访问限制,比如次数或有效期。如果使用One API,可能需要检查路由配置是否正确,模型名称是否匹配。例如,模型在One API中的名称是否请求中的名称一致,可能需要大小写敏感的问题,比如“QwQ”和“qwq”的区别。 另外,用户可能没有正确安装依赖,比如vllm,或者模型文件路径错误,导致服务无法找到模型,从而返回权限错误。引用[5]提到类似的问题,表不存在,可能类比到模型文件不存在或路径错误。 总结可能的解决步骤:1. 确认模型名称是否正确;2. 检查令牌权限和绑定;3. 验证模型是否下载并配置正确;4. 检查服务配置和依赖安装;5. 查看日志获取详细错误信息。需要将这些步骤用中文清晰地解释,并引用相关的参考资料。</think>### 如何解决令牌无权访问模型 `qwq:latest` 的问题? #### 可能原因分析: 1. **令牌权限配置错误**:令牌未绑定对应模型 `qwq:latest` 或未分配访问权限[^4]。 2. **模型名称不匹配**:实际模型名称可能请求的 `qwq:latest` 不一致,例如模型可能注册为 `QwQ-32B`[^1]。 3. **服务配置问题**:后端服务(如 vLLM 或 One API)未正确加载模型或端口配置错误[^2]。 4. **账户权限不足**:使用的账户可能未授权访问该模型,或模型文件路径权限受限[^5]。 --- #### 分步解决方案: 1. **确认模型名称版本** - 根据引用[1],模型全称为 `QwQ-32B`,下载命令为 `ollama pull qwq`。请检查是否使用正确的模型名称(区分大小写),例如尝试替换 `qwq:latest` 为 `QwQ-32B`。 - 示例请求格式: ```bash curl http://api-endpoint/v1/chat/completions -H "Authorization: Bearer YOUR_TOKEN" -d '{"model": "QwQ-32B", "messages": [...]}' ``` 2. **检查令牌权限配置** - 在 One API 或类似管理平台中,确保令牌绑定了目标模型,且未设置访问频率、有效期等额外限制。 - 验证令牌是否属于有权限的角色(如管理员或特定模型白名单用户)。 3. **验证模型下载加载状态** - 通过命令行确认模型已正确下载: ```bash ollama list # 查看本地模型列表是否包含 qwq ``` - 如果使用 vLLM 部署,检查服务启动命令是否包含模型路径: ```bash vllm serve Qwen/QwQ-32B-AWQ --max-model-len 5680 # 引用[2] ``` 4. **检查依赖配置文件** - 确保已安装必要的依赖库(如 vLLM): ```bash pip install vllm # 引用[2] ``` - 检查配置文件(如 `config.yaml`)中模型路径和名称是否请求一致。 5. **查看日志定位具体错误** - 从 One API 或服务日志中查找请求 ID `2025031215481788602376089653813` 的详细报错信息: ```bash journalctl -u oneapi | grep "2025031215481788602376089653813" ``` - 常见错误类型: - `ER_NO_SUCH_TABLE` → 模型未加载或路径错误(类比引用[5])。 - `ConnectTimeout` → 服务未启动或端口冲突。 --- #### 扩展验证方法: - **测试模型基础功能** 运行官方示例代码验证模型是否正常响应: ```python from openai import OpenAI client = OpenAI(base_url="http://localhost:port/v1", api_key="YOUR_TOKEN") print(client.chat.completions.create(model="QwQ-32B", messages=[...])) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值