新质生产力解析:全景图+58大产业链图谱

58张新质生产力产业链图谱

新质生产力是在新时代背景下,以创新为主导,具有高科技、高效能、高质量特征的先进生产力形态。这个概念强调的是生产力的质变而非单纯的量的增长,它涉及到技术、生产要素配置、产业结构等方面的深度变革。

58张新质生产力产业链图谱,让我们从各个产业链中,感知和洞察新质生产力的位置和场景。

01

元宇宙产业图谱

02

算力产业图谱

03

数商产业图谱

04

人形机器人产业图谱

05

人工智能产业图谱

06

合成生物产业图谱

07

类器官芯片产业链图谱

08

超高清视频显示产业链图谱

09

量子通信产业链图谱

10

脑机接口产业链图谱

11

新型储能产业链图谱

12

充电桩产业链

13

抽蓄电站产业链

14

氟化工产业链

15

光通信产业链

16

航空发动机零部件产业链

17

化妆品产业链

18

锂电池产业链

19

锂电池涂覆材料产业链

20

数据中心建设产业链

21

上游:材料与核心零部件及系统

温控设备产业链

22

小分子创新药产业链

23

智能马桶产业链

24

LED产业链

25

半导体产业链

26

电池产业链

27

风电产业链

28

高铁产业链

29

基建产业链

30

家电产业链

31

聚氨酯产业链

32

物流产业链

33

冷链物流产业链

34

食品饮料产业链

35

特斯拉产业链

36

无人驾驶产业链

37

芯片产业链

38

疫苗产业链

39

稀土产业链

40

纤维产业链

41

新零售产业链

42

水处理产业链

43

大气治理产业链

44

新基建-特高压产业链

45

新基建-工业互联网产业链

46

新基建-大数据产业链

47

新基建-人工智能产业链

48

智能汽车产业链

49

智能网联汽车产业链

50

智能物联网AloT产业链

51

5G小基站产业链

52

3D打印产业链

53

3D玻璃产业链

54

触摸屏产业链

触摸屏产业链图谱

55

军工产业链

56

航空发动机产业链

57

机床产业链

58

激光产业链

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值