在当今的数字化时代,企业面临着愈发激烈的市场竞争以及快速变化的客户需求。为了保持竞争优势并实现可持续发展,企业进行数字化转型已成为必然选择。数字化转型是一个涵盖企业各个方面的系统性过程,包括业务流程、组织结构、技术应用等。
一、标准化:数字化转型的基石
标准化是数字化转型的基础,它为企业提供了统一的规范和准则,确保各个环节的协调一致。在标准化阶段,企业需要对业务流程、数据格式、技术标准等进行梳理和优化,构建一套完备的标准体系。
(一)业务流程标准化
业务流程是企业运营的核心,对其进行标准化能够提升流程的效率和质量,减少重复劳动和错误。企业可以运用业务流程建模(BPM)工具,对现有流程进行剖析和优化,剔除冗余环节,明确流程的输入、输出以及关键控制点。同时,制定详尽的流程操作手册,以确保员工能够依据标准流程开展工作。
(二)数据格式标准化
数据作为数字化转型的重要资产,数据格式的标准化是实现数据共享与分析的关键。企业应当制定统一的数据标准,涵盖数据定义、数据结构、数据编码等方面,以保证不同系统和部门之间的数据能够顺畅对接。此外,还需建立数据质量管理体系,对数据的准确性、完整性和一致性进行监控和管理,提升数据质量。
(三)技术标准标准化
技术标准的标准化能够确保企业在技术选型和应用方面保持一致,降低技术风险和成本。企业应根据自身的业务需求和发展战略,制定技术标准规范,包括硬件设备、软件系统、网络架构等方面的标准。同时,强化对技术标准的执行和监督,推动技术标准的有效实施。
二、信息化:实现业务流程的自动化
信息化是在标准化的基础上,借助信息技术手段实现业务流程的自动化和信息化管理。通过信息化建设,企业能够提高工作效率、降低成本并提升管理水平。
(一)企业资源规划(ERP)系统
ERP 系统是企业信息化的核心,它涵盖了企业的财务、采购、销售、生产等多个业务领域,实现了企业资源的集成管理。企业通过实施 ERP 系统,能够优化业务流程,提高信息的准确性和及时性,实现资源的合理配置与高效利用。
(二)客户关系管理(CRM)系统
CRM 系统是企业管理客户关系的重要工具,可助力企业实现客户信息的集中管理、销售机会的跟踪以及客户服务的提升。通过 CRM 系统,企业能更好地了解客户需求,提高客户满意度和忠诚度。
(三)办公自动化(OA)系统
OA 系统是企业实现办公自动化的重要途径,包含公文管理、邮件管理、日程安排、会议管理等功能,可提高办公效率和协同工作能力。
三、数字化:挖掘数据价值
数字化是在信息化的基础上,通过对数据的深入挖掘和分析,以实现数据驱动的决策和业务创新。在数字化阶段,关键是将数据作为企业的重要资产进行管理和利用,充分发挥其价值。
(一)数据仓库和数据挖掘
数据仓库是企业数据的集中存储和管理平台,能够将来自不同系统的数据进行整合和清理,为数据挖掘和分析提供数据支持。数据挖掘则是从大量数据中发现潜在模式和规律的过程,通过数据挖掘技术,企业可以洞察客户的行为模式、市场趋势、产品需求等信息,为决策提供依据。
(二)大数据分析
随着互联网和物联网的发展,企业面临着海量数据,大数据分析成为企业数字化转型的重要手段。大数据分析能够帮助企业处理和分析大规模数据,挖掘隐藏在其中的价值。企业可利用大数据分析技术进行市场预测、风险评估、精准营销等,增强企业的竞争力。
(三)数字化营销
数字化营销是运用数字化技术手段实现营销目标的一种方式,包括社交媒体营销、搜索引擎营销、内容营销等。通过数字化营销,企业能够更精准地定位目标客户,提高营销效果和投资回报率。
四、智能化:实现智能决策和业务优化
智能化是数字化转型的高级阶段,它是在数字化的基础上,利用人工智能、机器学习等技术,实现智能决策和业务优化。智能化有助于企业提高决策的准确性和效率,提升业务的自动化和智能化水平。
(一)智能决策支持系统
智能决策支持系统是运用人工智能技术,为企业提供决策支持的系统。它能够通过对数据的分析和挖掘,自动生成决策建议,辅助企业管理者做出更科学、准确的决策。例如,利用机器学习算法进行销售预测、库存管理、风险评估等。
(二)智能自动化
智能自动化是将人工智能技术应用于业务流程中,实现业务流程的自动化和智能化。例如,运用机器人流程自动化(RPA)技术,自动完成重复性工作任务;利用智能客服系统,实现客户服务的自动化和智能化。
(三)智能制造
智能制造是制造业数字化转型的重要方向,它借助物联网、大数据、人工智能等技术,实现制造业的智能化生产和管理。例如,通过智能工厂实现生产过程的自动化和智能化控制,提高生产效率和产品质量;通过供应链智能管理,实现供应链的优化和协同。
五、结论
数字化转型是企业发展的必然趋势,标准化、信息化、数字化、智能化是数字化转型的四个关键阶段。在实施数字化转型战略时,企业应根据自身实际情况,制定合理的规划和实施方案,逐步推进各个阶段的工作。同时,企业要加强对数字化转型的领导和管理,培养数字化人才队伍,营造数字化文化,确保数字化转型的顺利实施。只有通过数字化转型,企业才能在激烈的市场竞争中占据优势,实现可持续发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。