国内最早开始做智能体框架的团队之一,MetaGPT团队,最近推出了一款可以媲美devin的AI“软件公司”,叫做MGX(MetaGPT-X)。
MGX 是一个基于 MetaGPT 框架的 AI 软件开发团队。MGX以五大核心AI代理的协同工作,彻底颠覆传统软件开发模式,让创意秒变现实!
MGX 的特点
-
全流程自动化,零代码开发
MGX通过五位专业AI角色(产品经理、架构师、工程师、测试员、数据分析师)无缝协作,从需求分析、技术设计、编码、测试到部署,全程无需手动编码!用户只需用自然语言描述需求,系统自动生成产品文档(PRD)、API设计、代码实现等,轻松构建个人博客、企业级应用甚至复杂数据分析工具!
-
多智能体协作,媲美人类团队
每个AI代理都像真实员工一样分工明确:
这种协作模式不仅效率惊人,还能根据项目需求“雇佣”最适合的AI成员,打造 智能化开发社会(AI Society) !
-
Emma (产品经理) :精准提炼用户需求,生成详细开发计划。
-
Bob(架构师) :设计高可用技术方案,确保系统稳健性。
-
Alex(工程师) :高效生成代码,支持主流开发框架。
-
David(数据分析师) :实时分析数据,优化产品决策。
-
Mike(团队领导) :统筹全局,确保项目按时交付。
-
L5级AI开发团队,行业顶尖水平
与GitHub Copilot(L1代码补全)和Devin(L4任务自动化)不同,MGX属于L5级AI开发团队,能独立完成复杂项目全生命周期管理,甚至替代初级/中级外包团队!
-
自然语言编程,人人都是开发者
无论是创建个人博客、开发小游戏,还是分析MetaGPT的版本更新,只需输入一句话需求,MGX即刻响应!
使用案例
例如:“写一个利用deepseek来生成公众号文章的写作工具。”——剩下的交给AI
Mike很快就帮我制定了开发计划,并分配给其他AI代理。
Emma迅速参考网络文档,生成了一份详细的PRD文档。
Bob则根据PRD文档,设计了一个简洁高效的技术方案,并画出了软件架构的流程图。
Alex则根据Bob的设计,高效地编写代码完成了开发,并确保代码符合主流开发框架。
整个过程,Mike一直在统筹全局,确保项目按时交付。最终生成的效果,我也是比较满意的。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。