通过DeepSeek+Cherry Studio,你可以轻松搭建一个本地运行的 AI 知识库。这种方法结合了 DeepSeek 的强大推理能力和 Cherry Studio 的可视化界面,适合个人和企业用户在本地环境中高效管理和使用知识资产。无论是个人学习、科研还是企业内部知识管理,都可以通过这种方式实现智能化的知识管理和查询。
Cherry Studio 是一款集成多语言模型的桌面客户端,支持 Windows、Mac 和 Linux 系统。它提供了丰富的功能,包括但不限于:
• 多语言模型接入:支持 OpenAI、Gemini、Anthropic 等主流云服务以及本地模型(如 Ollama)。
• 知识库搭建:支持本地文件、网址、站点地图等多种数据源,可快速构建知识库。
• AI 助手与对话:内置 300+ 预配置的 AI 助手,支持自定义创建专属助手。
• 多模态识别:支持文档识别、翻译、绘画等功能。
• 数据安全:支持全本地场景使用,结合本地大模型,避免数据泄漏。
一、准备工作
1.硬件要求
• 最低配置:
• CPU:Intel i5 或更高
• 内存:16GB RAM
• GPU:NVIDIA GTX 1660 或更高(推荐 RTX 30 系列)
• 存储:至少 50GB SSD 空间
• 推荐配置:
• CPU:Intel i7 或更高
• 内存:32GB RAM
• GPU:NVIDIA RTX 3060 或更高(RTX 4090 更佳)
• 存储:100GB SSD 空间
2.软件准备
• Ollama:用于本地部署 DeepSeek 模型。
Ollama 是一个开源工具,允许用户在本地硬件环境中部署和管理大规模预训练语言模型。它提供了简单易用的命令行工具和 API 接口,支持多种预训练模型(如 GPT、BERT 等),并允许用户进行模型微调和自定义。Ollama 的目标是降低大型语言模型的使用门槛,同时确保数据隐私和高性能。
• Cherry Studio:提供可视化界面,方便知识库管理和对话交互。
• DeepSeek 模型:选择合适的模型版本(如 DeepSeek-R1:8B 或 DeepSeek-R1:14B)。
• 嵌入模型:如 BAAI/bge-m3,用于将文档向量化。
二、本地部署 DeepSeek 模型
1.安装 Ollama
• 访问 Ollama 官方网站:[Ollama 官网]()。
• 根据操作系统选择合适的版本下载并安装 Ollama。
• 安装完成后,打开终端并运行以下命令以启动 Ollama:
ollama service start
2.下载并运行 DeepSeek 模型
• 在终端中运行以下命令,下载并运行 DeepSeek 模型:
ollama pull deepseek-r1:8b
ollama run deepseek-r1:8b
• 如果硬件配置较高,可以选择更大参数的模型(如`deepseek-r1:14b`)。
3.配置 Ollama
• 设置 Ollama 的监听地址,确保 Cherry Studio 能够访问:
ollama config set host 0.0.0.0:11434
• 确保 Ollama 服务运行中,不要关闭终端。
三、安装并配置 Cherry Studio
1.下载并安装 Cherry Studio
• 访问 Cherry Studio 官方网站:[Cherry Studio 官网]()。
• 根据操作系统选择合适的版本下载并安装 Cherry Studio。
• 安装完成后,启动 Cherry Studio。
2.添加 DeepSeek 模型
• 打开 Cherry Studio,点击左下角的设置图标(齿轮)。
• 在设置页面中,选择「模型服务」,点击「+添加」。
• 在提供商名称中填写`Ollama`,提供商类型选择`Ollama`。
• 在模型列表中,选择`deepseek-r1:8b`或其他已下载的 DeepSeek 模型。
• 点击「添加模型」,并设置为默认模型。
3.添加嵌入模型
• 在 Cherry Studio 的设置中,选择「嵌入模型」。
• 添加嵌入模型,例如`BAAI/bge-m3`或`Pro/BAAI/bge-m3`(后者精度更高)。
• 点击「添加」完成嵌入模型的配置。
四、创建知识库
1.添加知识库
• 在 Cherry Studio 的右侧栏中选择「知识库」选项。
• 点击「添加知识库」,输入知识库名称(如「我的专业知识库」)。
• 选择嵌入模型(如`BAAI/bge-m3`),点击「确定」。
2.上传文件
• 点击「添加文件」,选择需要加入知识库的文件(如 PDF、Word、Markdown 等)。
• 等待文件向量化完成(文件旁出现绿色勾号表示完成)。
• 注意:如果文件是扫描件、手写件或包含复杂表格和数学公式,解析效果可能不佳。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。