前言
自从大语言模型(LLM)横空出世以来,如何将 LLM 与现有商业系统有效结合、让其真正赋能各类业务,已成为当前最热门的研究方向之一。
Function Calling[1] 和 Model Context Protocol[2](模型上下文协议,MCP)是实现这种让 LLM 与外部系统进行交互的两种关键技术概念。然而二者在概念上有所重叠,很多人并不能讲出两种概念的区别与联系。
Function Calling
外部系统通常会以函数(function)的形式进行封装,LLM 通过函数调用(function calling)可以实现与外部系统的交互。
工具(Tool)
Function 这个术语实际上已经废弃了,取而代之的是 Tool[3]。Tool 泛指指一切 LLM 能够调用的外部工具。Tool 相比 function 要更加广义,只不过目前的 tool 只有 function calling 这一种形式,因此为了文章方便理解,就这里认为 function 与 tool 是等价的。
Function Calling 具体指的是 LLM 根据用户的自然语言输入,自主决定调用哪些函数,并进行格式化的函数调用的能力。
Function Calling 一般的过程如下:
- 将用户的自然语言输入与已有函数的描述作为输入参数传给 LLM;
- LLM 结合输入参数,决定调用哪些函数,并指明必要参数(如函数的入参),进行格式化(如 JSON、XML 格式)的输出;
- 用户端接收到 LLM 格式化的函数调用后,对本地的函数进行调用,得到结果;
- 将得到的函数结果传给 LLM,使得 LLM 有了所需的上下文信息。
Function Calling 时序图(来自 OpenAI 开发者文档)
Function Calling 实际上强调的是 LLM 本身的能力,一些经过特殊训练或调优的 LLM 能够根据用户的自然语言输入决定使用哪些函数,并按约定的格式表达出函数的调用。这里所描述的 “格式”,不同 LLM 提供商之间是可能有差异的。假设我们有个叫做 get_weather
的 function,入参为地点 location,不同 LLM 提供商会给出不同的 function calling 格式:
OpenAI ChatGPT:
{
"type": "function_call",
"id": "fc_12345xyz",
"call_id": "call_12345xyz",
"name": "get_weather",
"arguments": "{\"location\": \"Shanghai\"}"
}
Anthropic Claude:
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "<thinking>To answer this question, I will: 1. Use the get_weather tool to get the current weather in San Francisco. 2. Use the get_time tool to get the current time in the America/Los_Angeles timezone, which covers San Francisco, CA.</thinking>"
},
{
"type": "tool_use",
"id": "toolu_01A09q90qw90lq917835lq9",
"name": "get_weather",
"input": {"location": "Shanghai"}
}
]
}
Google Gemini:
{
"functionCall": {
"name": "get_weather",
"args": {
"location": "Shanghai"
}
}
}
Model Context Protocol (MCP)
当 LLM 发起了一个 function calling 后,这个 calling 最终会需要外部系统进行执行,而 MCP 正是提供了一个通用的协议框架调用外部系统执行这个 function calling。本文不会对 MCP 的概念进行具体说明,假设读者已了解。
带入到上文所述的 function calling 步骤,MCP 实际上规范的就是步骤 3,也就是函数的具体执行过程。无论 LLM 返回的 function calling 是什么样子的格式,在步骤 3 时都需要转换成 MCP 所规定的 API 数据结构(这一步转换应该是 MCP host 需要做的),并需要 LLM 用户侧按照 MCP 的规范进行响应的处理。例如对于上文的 get_weather
,MCP server 接收到的请求结构必须是这样的 JSON-RPC:
{
"jsonrpc": "2.0",
"id": 129,
"method": "tools/call",
"params": {
"name": "get_weather",
"arguments": {
"location": "Shanghai"
}
}
}
MCP client 接收到的响应则是类似于这样的 JSON-RPC:
{
"jsonrpc": "2.0",
"id": 2,
"result": {
"content": [
{
"type": "text",
"text": "Current weather in Shanghai:\nTemperature: 12°C\nConditions: Partly cloudy"
}
],
"isError":false
}
}
MCP 标准化了 LLM 应用与外部系统的以下交互过程:
- 动态地提供对可用函数的标准化的描述(比如通过
tools/list
API); - 标准化对外部系统的调用与结果的处理(MCP 规范了 MCP server 需要有哪些 API 能力,以及 API 的请求/相应数据结构)。
如果没有 MCP 这样的协议规范,不同团队的 LLM 应用需要:
- 自行维护可用函数列表;
- 外部系统的接入需要进行针对适配,不具有通用性。
现在只要一个 LLM 应用有 MCP client 的功能,那么它就一定能支持接入任何具有 MCP server 功能的外部系统,且不需要额外的适配成本,MCP 很好地构建了 LLM 应用的大生态。
MCP 与 LLM 的关系
总结
总结来说,function calling 与 MCP 是具有一定联系,但侧重点不同的两个技术概念。前者侧重于描述 LLM 本身具有的结构化函数调用能力(调用哪些函数),后者则侧重于描述函数的规范化执行(怎么执行被调用的函数),大概就是分配与执行的关系。
下面的表格提炼了两者的主要联系与区别,希望对理解本文有帮助:
比较维度 | Function Calling | MCP |
---|---|---|
主要职责 | 解析用户意图并选择合适的函数调用,并进行格式化输出 | 规范化函数的具体执行过程,即规范 LLM 应用与外部系统的交互 |
责任方 | 各 LLM 提供商 | LLM 应用(client 端)、外部系统(server 端) |
数据结构 | 应 LLM 提供商而有所不同 | 规范的 JSON-RPC |
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。