在人工智能领域,大型语言模型(LLMs)正变得越来越强大和普及。为了更好地控制和利用这些模型,我们引入了两种重要的机制:模型控制协议(MCP)和函数调用(Function Call)。虽然它们都旨在提升大模型的效能,但它们在实现方式、应用场景和解决的问题上存在显著差异。本文将深入探讨这两种机制的概念,并通过 Claude 的应用实例进行分析。
什么是模型控制协议(MCP)?
首先,需要明确的是,MCP 并不是一个标准化的协议,而是一种更偏底层的控制策略,用于在模型推理过程中对模型的内部状态或输出进行细粒度地干预。可以将 MCP 理解为对大模型的“微操”,它允许我们:
- 引导模型生成特定结构的内容: 例如,强制模型以 JSON 或 XML 格式输出,确保输出结果易于解析和处理。
- 控制模型生成方向: 例如,限制模型只能回答特定领域的问题,避免模型生成不相关或不准确的内容。
- 调整模型行为: 例如,增加或降低模型的创造性或详细程度,使模型输出更符合特定需求。
- 在推理过程中添加上下文: 例如,在生成过程中动态地插入信息,提高模型输出的准确性。
MCP 的特点:
- 底层控制: MCP 通常需要访问模型的内部机制,涉及对模型推理流程或参数的调整。
- 模型特定: MCP 的实现往往高度依赖于特定模型的架构和设计。
- 复杂性: MCP 的实现可能比简单的提示工程更复杂,需要具备一定的编程和模型理解能力。
什么是函数调用(Function Call)?
Function Call 则是一种更高层、更结构化的方法,用于让大语言模型在生成文本的过程中调用外部函数或工具。它可以被看作是大模型的“外挂”,解决了大模型缺乏外部知识和操作能力的问题。
Function Call 的工作流程:
- 定义函数: 开发者需要先定义好需要让模型调用的函数及其参数,并以某种方式(如 JSON Schema)告知模型。
- 模型决定调用: 当模型在生成文本时,如果认为当前任务需要调用某个函数,它会输出一个包含函数名和参数的特殊格式的 JSON 对象。
- 执行函数: 开发者接收到模型的输出后,根据模型指定的函数和参数来执行实际的函数。
- 返回结果: 将函数执行的结果返回给模型。
- 继续生成: 模型接收到函数返回的结果后,会继续生成文本,并将函数返回的结果纳入到上下文当中。
Function Call 的特点:
- 高层抽象: 模型使用者只需定义函数和其描述,无需关心模型的内部实现。
- 明确接口: 函数调用通过规范的 API 定义,易于理解和使用。
- 可扩展性: 可以灵活地扩展模型的外部能力,例如访问数据库、调用搜索引擎、发送邮件等。
- 广泛应用: 越来越多的模型开始支持 Function Call 功能。
MCP 与 Function Call 的区别:
为了更清晰地理解两者的区别,我们可以用一个管弦乐队来类比:
- MCP 就像乐队指挥的手势和表情: 它控制着乐队的节奏、力度,以及不同乐器的音量,是针对演奏细节的底层控制。
- Function Call 就像邀请一位特别的独奏家: 乐队在演奏过程中可能需要一段特别的钢琴独奏,此时可以通过一个特定的邀请(Function Call)让钢琴演奏家(外部工具)加入。
更具体来说,它们的差异可以总结为以下几点:
特征 | MCP (模型控制协议) | Function Call (函数调用) |
---|---|---|
核心目的 | 细粒度地控制模型的内部行为、输出结构或生成方向。 | 让模型具备调用外部工具或函数的能力,以扩展其功能。 |
控制层面 | 更底层的控制,可能涉及模型内部状态、参数或推理过程的调整。 | 更高层的抽象,通过定义明确的函数接口来扩展模型的能力。 |
实现方式 | 可能需要访问模型的内部机制,通常高度依赖于模型架构和设计。 | 通过标准化的 API 接口进行,更容易实现和使用。 |
应用场景 | 例如,强制模型输出 JSON 格式、限制模型回答特定领域问题、调整模型创造性等,主要是在模型生成阶段进行更深层次的干预。 | 例如,访问数据库、调用搜索引擎、发送邮件等,是解决大模型缺乏外部知识和操作能力问题。 |
复杂性 | 实现通常比函数调用复杂,需要对模型有一定的理解。 | 实现相对简单,只需定义好函数及其描述。 |
通用性 | MCP通常是模型特定的,不具备通用性。 | Function Call 在很多大模型中都支持,具备一定的通用性。 |
Claude 中的应用实例
在 Claude 模型中,虽然具体的 MCP 实现细节可能不公开,但我们仍可以通过示例来理解其应用场景:
MCP 应用示例:
-
强制 JSON 输出: 假设我们需要 Claude 输出一个包含书籍信息的 JSON 对象,我们可以使用类似如下的指令,引导模型生成指定结构的数据。
请按照以下 JSON 格式输出三本关于人工智能的书籍信息: { "books":[ {"title": "书名", "author": "作者", "year": "出版年份"}, ... ] }
这本质上是一种在推理层面,利用特定提示词引导模型结构化输出的 MCP 方法。
-
2.领域知识限制: 如果我们希望 Claude 只回答关于编程的问题,可以设置相关提示词,引导模型专注特定领域,限制其知识范围。
-
请你只回答关于Python编程的问题
Function Call 应用示例:
-
调用搜索引擎: 假设我们需要 Claude 回答一个关于某个最新技术的问题,而 Claude 的训练数据可能不包含最新的信息,我们可以定义一个
search_web(query)
函数,让 Claude 调用搜索引擎获取最新信息。 -
访问数据库: 假设我们需要 Claude 根据用户提供的条件从数据库中查询用户信息,我们可以定义一个
get_user_info(name, location)
函数,让 Claude 通过调用该函数来访问数据库,并将结果返回给用户。
总结
MCP 和 Function Call 是两种重要的大模型控制机制,它们从不同层面提升了大模型的实用性:
- MCP 主要用于对模型内部行为和输出进行细粒度控制,类似于“微操”,让模型更精准地满足特定输出要求。
- Function Call 主要用于扩展模型外部能力,让模型能够调用外部工具和服务,解决知识盲区和操作能力不足的问题,类似于“外挂”。
通过合理应用这两种机制,我们可以更好地利用大模型的强大能力,构建更加智能和实用的应用。 随着大模型的不断发展,我们期待看到更多创新性的方法来提升模型的控制和效能。
欢迎关注“AI演进”并加入AI演进社群,学习与交流。