本文介绍MCP在数据领域的应用探索,通过MCP服务实现以Text2SQL的方式统计数据信息。本文包括以下内容:
-
服务核心组件介绍
-
MCP数据服务实现
-
数据服务功能验证
效果如下:
*一、服务核心组件介绍*
该MCP Server包括Resources、Prompts、Tools组件。首先介绍各组件概念及使用场景。
1. Resources
Resources 是 MCP中的一个核心组件,它允许Server暴露可以被 clients 读取并用作 LLM 交互上下文的数据和内容。
Resources 代表 MCP server 想要提供给 clients 的任何类型的数据。这可以包括:文件内容、数据库记录、API 响应、实时系统数据、屏幕截图和图像、日志文件等等。每个 resource 都由一个唯一的 URI 标识,并且可以包含文本或二进制数据。
Resources 可以包含两种类型的内容:
(1)文本资源
文本资源包含 UTF-8 编码的文本数据。这些适用于:
- 源代码
- 配置文件
- 日志文件
- JSON/XML 数据
- 纯文本
(2)二进制资源
二进制资源包含以 base64 编码的原始二进制数据。这些适用于:
- 图像
- PDFs
- 音频文件
- 视频文件
- 其他非文本格式
2. Prompts
Prompts 允许 servers 定义可复用的提示模板和工作流,clients 可以轻松地将它们呈现给用户和 LLMs。它们提供了一种强大的方式来标准化和共享常见的 LLM 交互。
MCP 中的 Prompts 是预定义的模板,可以:
- 接受动态参数
- 包含来自 resources 的上下文
- 链接多个交互
- 引导特定的工作流程
3. Tools
Tools 是MCP中的核心组件,它允许 servers 暴露可执行函数,这些函数可以被 clients 调用。通过 tools,LLMs 可以与外部系统交互、执行计算并采取进一步行动。如前文中的weather服务。
*二、MCP数据服务实现*
基于MCP实现数据库表结构查询、数据抽样、关联分析等核心功能,验证资源与工具的协同能力。
1. Resources
(1)列举数据库中表信息
(2)查询特定表的Schema
(3)查询表之间的关联信息
(4)表数据抽样
2. Tools
(1)执行只读Select查询语句
(2)统计表数据量
3. Prompts
(1)探索数据库
(2)分析表信息
(3)*分析表关联*
*三、数据服务功能验证*
通过Text2SQL服务将自然语言转化为SQL语句,完成订单总量统计、维度分类分析(如每日订单量、订单状态分布)及跨表关联查询(如特定商品类别的订单统计),提升数据查询效率与易用性。
数据包括用户表Users、订单表Orders、订单明细表Order_items以及商品信息表Products,其中订单明细表与订单表和商品表关联,数据模型如下:
1. 总量统计
统计订单总量
2. 维度分类统计
(1)统计每天订单量
(2)统计各状态的订单量
3. 关联统计
统计购买服装类的订单量
四、总结
本文系统性地探讨MCP在数据领域的应用实践,聚焦于通过Text2SQL服务实现自然语言到结构化查询的智能化转换。通过核心组件解析、数据服务实践与功能验证,全面展现MCP在数据管理与分析中的技术潜力与实用价值。未来随着场景深化,结合更丰富的工具链与模型优化,MCP有望成为企业数据智能化的核心基础设施。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。