今天想和大家分享如何利用Llama3大语言模型对沪深300指数成分股进行选股。我把大模型的API替换成了GropCloud,从GropCloud中我们可以调用Llama3大模型,专门用来分析沪深300指数成分股。本文所有代码已打包,并配有详细文档,下载方法详见文末,代码文件结构如下:
通过利用Llama3大语言模型和各种量化分析指标,我们可以得到一些智能化、深度的股票分析和预测。
Llama3大模型最终输出的结果如下:
我们如何构建这个分析系统呢?首先,我们需要获取沪深300指数成分股的股票代码及其历史交易数据。这些数据包括每只股票的开盘价、收盘价、最高价、最低价和成交量等关键指标。为了确保数据的准确性和完整性,我使用了baostock这个金融数据接口。数据获取后,需要进行预处理,包括创建存储数据的文件夹结构,并将原始数据转换为CSV文件格式。这样做是为了保证后续分析的顺利进行。
在获取了完整的历史数据后,我会根据预定义的财务指标对数据进行筛选。主要的财务指标有市盈率(P/E)、市净率(P/B)和股息收益率。市盈率衡量股票的估值水平,反映市场对公司未来盈利能力的预期;市净率用于评估股票市场价值与其账面价值的比率,帮助识别被高估或低估的股票;股息收益率则表示每股股息与当前股价的比率,是衡量股票收益的重要指标。通过这些指标,我可以筛选出具有投资潜力的股票,过滤掉不符合条件的股票,从而集中分析高质量的股票。
筛选后的股票列表会被输入到Llama3大语言模型中进行深入分析。Llama3是一种非常强大的AI工具,能够处理复杂的金融数据,进行趋势预测和风险评估。与传统金融量化选股相比,Llama3大语言模型有几个显著的优势。首先,Llama3能够快速处理大量的历史数据和实时数据,提供更及时的分析结果。其次,它可以识别和分析复杂的市场模式和趋势,比传统模型更精准。最后,Llama3能结合多种财务指标和市场数据,提供更全面的股票评估。
具体来说,系统中的`screener.py`模块起到了关键作用。这个模块负责加载股票数据,并根据设定的财务指标进行筛选。它先从存储的CSV文件中读取数据,然后根据预设的筛选标准,挑选出符合条件的股票。例如,我们可以设置一个筛选标准,只选择市盈率低于一定值且股息收益率高于一定比例的股票。通过这样的筛选,我们能够专注于分析那些最有投资潜力的股票。
在AI模型的分析过程中,主要包括几个方面的内容。首先是趋势预测,基于历史数据和当前市场情况,预测股票的未来价格走势。其次是风险评估,通过分析股票的波动性和市场环境,评估投资风险。最后是综合评分,结合多种财务指标和市场数据,对每只股票进行综合评分,帮助投资者做出明智的决策。Llama3大语言模型的优势在于其强大的计算能力和对复杂模式的识别能力,能够提供比传统分析更为准确和深入的洞察。
分析完成后,系统会生成详细的报告,包括每只股票的预测价格、风险评估和综合评分。投资者可以通过这些报告了解每只股票的投资潜力和风险,辅助其做出投资决策。报告内容不仅有数值分析,还包括模型对市场趋势的文字解读,帮助投资者全面理解分析结果。最终输出的报告既有定量分析的数据支持,又有定性分析的深度解读。
通过结合传统金融分析方法和现代AI技术,系统利用Llama3大语言模型,结合多种财务指标,对沪深300指数成分股进行全面、智能的分析和预测,为投资者提供了宝贵的投资决策支持。希望通过这套系统,大家能够更好地理解市场动态,抓住投资机会,规避潜在风险。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。