随着大模型能力的不断增强,以及被大众熟知,掀起了新一轮的“淘金”热潮,可以预见不断有新的场景会被挖掘。但与过去移动互联网和AI 1.0时代应用开发范式不同,基于平台的开发方式被广泛接受。这样的趋势催生了当前大量的开发者尝试利用Coze,Dify等低代码的LLM开发平台来实现自己的AI创意。无论有无编程经验,这类开发工具都能帮助他们渐进式地一步步完成自己的Bot开发。
在coze上已经有上万个bot,覆盖了各个领域,并且以此方式构建的应用不同于过去割裂的功能APP的形式,而是朝着闭环完成一个需求的方式演进。以“一分钟建站”为例,通过对话聊天,一气呵成完成了传统的需求定义,开发,部署全过程。这种新的产品开发模式值得每一个开发者和创业者关注。
如果说AI native产品应该关注是否全过程端到端的满足用户需求,尽可能交互体验自然化,减少信息和思维过载。那么,对于AI native公司应该关注Agent能够全链路端到端支撑公司业务SOP,尽可能的突破人对业务规模和效率的制约。
就打造AI Native公司来讲,最值得尝试的领域就是对于人员成本敏感的BPO(商务流程外包)业务,谁的成本低,谁就将在竞争中获得大的优势。
下面就是一个概念性的设计实现,来自于Aniket Hingane的文章[1],能够借助AI agent完成客户服务、技术支持、计费与支付、停机管理、客户入职等业务过程。
整个流程作者是在dify中构建,从整个实现来讲还是非常清晰自然的。该公司分角色由Receptionist Agent,Customer Service Agent,Billing and Payment Agent,Electric Connection and Disconnection Agent,Outage Management Agent,Tech Support Agent构成,每一种Agent完成领域类的相关工作,。比如Receptionist Agent就负责将用户问题进行分类,分发给指定的Agent,这可以替代传统的人工派单。
为了让每一个专业agent完成相关任务,需要打造知识库以保证Agent能够利用它获知相关的领域知识和流程内容,不仅如此,还可以进一步的构建标准工作流,从而固化每个角色的工作行为(作者未实现)。
以上相当于构建了一个专业部门,接下来需要给该部门招收员工,其核心就是如何定义Agent的行为和能力。
通过以上几步的的构建,一个由不同角色的Agent员工构成的AI Native公司便成立了。下面是实际运行的效果展示:
利用dify的能力也可以对其执行链路进行分析,可以看到其任务分发的执行细节。
该案例,我们可以直接在coze上复现,作者提供了知识库的素材,大家可以在此下载使用(https://github.com/aniket-work/how_I_built_simple_BPO_Company)
通过以上示例,可以看到构建一个标准的BPO业务流程并不复杂,通过不断迭代可以使得其业务运营效率和运营成本将对传统公司带来降维打击,但不可否认从全人到全AI,这将是一个长期的演进过程,
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。