10分钟搞定,DeepSeek+Ollama+AnythingLLM 本地部署完全指南,打造专属知识库

打开浏览器→下载 Ollama→输入 1 条命令→搞定!这不是魔法,而是本地部署大语言模型的全新方式。Ollama 简化了大型语言模型的运行,让每个人都能在本地轻松体验 AI 的强大。

但是,仅仅运行一个大语言模型还不够。如何让它真正理解你的数据,回答你的问题?这时,AnythingLLM 就派上用场了。

它能将你的文档、笔记、网页等各种数据源连接到本地 Ollama 运行的 DeepSeek 模型,构建一个真正属于你的、个性化的知识库问答系统。告别在海量信息中苦苦搜索,让 AI 成为你高效的知识助手!

关于引入 AnythingLLM 的理由,可以考虑以下几点:

1、数据连接: AnythingLLM 可以连接各种数据源,例如本地文件、网站链接等。

2、多模型选择:AnythingLLM支持各种主流模型的API接入方式,DeepSeek、OpenAI、Gemini等等。

3、易用性: 它通常提供友好的用户界面,方便用户进行配置和管理。

1 Ollama 本地化部署DeepSeek R1

Ollama 是一个用于本地运行大语言模型(LLMs)的开源工具,提供简单的界面和优化的推理引擎,使用户能够在个人设备上高效地加载、管理和运行 AI 模型,而无需依赖云端。

官网地址:https://ollama.com/

官网下载对应版本,然后根据自己本地配置运行命令。

其中,deepseek-r1:1.5b 换成适配你本地的模型。

运行命令:ollama run deepseek-r1:1.5b

介绍几个Ollama常用的命令:

1、列出本地可用的模型列表:ollama list

2、启动模型:ollama run model_name

3、查看模型信息:ollama show model_name

4、删除指定模型:ollama rm model_name

2 部署AnythingLLM

2.1 下载安装

打开官网地址:https://anythingllm.com/desktop,根据自己的系统选择下载的版本。

默认路径安装,或者修改默认安装路径都可以。

安装完成界面:

点击完成自动跳转到AnythingLLM界面。

选择Ollama,AnythingLLM会自动检测本地部署的模型,所以前提确保Ollama本地部署的模型正常运行

模型配置

1、LLM Selection(大语言模型选择):

这里选择了名为 Ollama 的模型。

说明用户的模型和聊天记录仅在运行 Ollama 模型的机器上可访问,这意味着数据不会在其他地方被存储或访问,从而增强了数据的安全性和隐私性。

2、Embedding Preference(嵌入偏好):

使用了名为 AnythingLLM Embedder 的嵌入工具。

说明用户的文档文本是在 AnythingLLM 的实例上私密嵌入的,这意味着文本数据的处理和转换是在本地进行的,不会泄露给第三方。

3、Vector Database(向量数据库):

使用了 LanceDB 作为向量数据库。

说明用户的向量和文档文本都是存储在这个 AnythingLLM 实例上的,这再次强调了数据的私密性和安全性。

收集用户对 AnythingLLM 服务的反馈,可选的调查问卷,可直接跳过。

创建工作区,填写工作区名称。

可以在聊天窗口与之对话了。

2.2 搭建本地知识库

在左侧工作区找到上传按钮。

我上传了一个表格文件。

选中上传的文本,点击移动到工作区。

点击Save and Embed。对文档进行切分和词向量化。

完成后,点击图钉按钮,将这篇文档设置为当前对话的背景文档。

测试效果:

我上传的知识库是虚拟了5本书及价格。随便选中其中一本问下价格。

可以考到模型思考的过程及最终答案,还是非常准确的。

2.3 DeepSeek R1 API 接入LLM

也许有的小伙伴会说,我本地硬件条件有限,就想使用DeepSeek官网服务怎么办?

不要着急,AnythingLLM支持直接调用DeepSeek官方提供的API接口。

在工作区右侧点击设置,选择聊天设置,可以更改LLM模型。

选择DeepSeek,输入API Key,选择DeepSeek R1模型。

输入DeepSeek API Key,选择DeepSeek R1模型就可以了。

点击最后更新工作区后就可以享受官方提供的大模型服务了。

知识库部署和2.2章节一致,只是调用的模型变为官方API接口。

看到这里,你是否发现AI私有化部署并没有想象中复杂?其实技术平权化的浪潮早已到来,重要的是勇敢迈出第一步。

毕竟,当技术门槛不复存在,唯一限制我们的,就只剩下想象力。

记住,每个科技达人都是从点击『安装』按钮开始的!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Ollama Project深度搜索特性 对于Ollama项目的深度搜索特性和信息,虽然提供的参考资料未直接提及此项目名称及其具体细节[^1],可以推测该类项目通常涉及复杂的算法和技术栈以实现高效的信息检索。 #### 搜索引擎架构设计 搜索引擎的核心在于如何有效地索引文档并快速响应用户的查询请求。为了支持深度搜索功能,系统可能采用了分布式存储和计算框架来处理大规模数据集。这允许对大量文本、图片或其他形式的内容执行复杂模式匹配操作。 #### 多字段匹配查询优化 当涉及到多属性条件下的精确查找时,采用`multi_match_query`机制能够显著提高召回率与精度比率。通过设置不同的参数组合方式(如best_fields),可以根据实际需求灵活调整权重分配策略从而获得更优的结果列表排序效果[^2]。 ```json { "query": { "multi_match": { "query": "Design Patterns", "fields": ["title", "synopsis"], "type": "best_fields" } } } ``` #### 高级数据分析能力集成 除了基本的关键词定位外,现代高级别的解决方案还会融入机器学习模型来进行语义理解层面的操作。例如,在某些应用场景下利用无监督聚类方法分析未标注的数据集合,并将其分类结果同已知标签做对比评估性能表现;或是借助特定领域内的预训练神经网络结构完成更加细致入微的任务导向型推理工作[^4]。 #### 实时跟踪与反馈循环构建 针对动态变化频繁的目标对象追踪场景,则往往依赖卡尔曼滤波器这样的统计工具实施状态估计过程中的不确定性管理。它能够在预测下一步位置的同时不断接收新观测值作为输入修正先前假设,形成闭环控制系统确保最终输出稳定可靠[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值