一口气推出10余款医疗智能体,联影要放大招了?

智能体,这可能是今年大模型产业最热的关键词之一。

一个典型的代表就是manus的一夜爆火,让整个人工智能产业意识到,将大模型能力落地形成智能体,才是应用的最佳,甚至是最短路径。

在医疗领域,各家纷纷拿出大模型产品,但从目前效果看,大多大同小异,关键是尚未有场景化聚焦非常明确的案例。智能体的出现,或许将是一个医疗场景落地的最佳解决方案。

就在最近,联影发布了“元智”医疗大模型,并同步推出覆盖影像诊断、临床治疗、医学科教、医院管理、患者服务等多场景的10余款医疗智能体。

一口气推出10余款医疗智能体,联影要放大招了?

良医看来,释放出大模型产品和十余款智能体,对联影而言,不仅仅是技术层面的挑战,更关键的一点是,将两种产品进行结合,通过医疗大模型+智能体缔造的生态,联影似乎意在打造一个协同的生态体。

良医将从三个角度解读联影这一系列的产品,第一,大模型的能力;第二,智能体的作用;第三,生态的化学反应。

*01大模型能力,**联影有哪些优势?*

年初DeepSeek爆火为AI医疗再添一把新火。

作为医疗领域的一员,联影在这一领域已经默默布局良久。今年2月时,联影曾小范围地透露在AI领域的部分成果,比如经过多年的布局,联影医疗成功打造了跨产品线的完整数智化超级平台,各产品线均已完成了智能化技术平台的开发和搭载,实现AI技术的源头级赋能,推动了多模态、跨尺度诊疗技术的创新。

时隔2个月,由联影举办的uAInnovation2025创新大会上,联影发布了“元智”医疗大模型。

根据官方介绍,联影“元智”医疗大模型(简称:uAI NEXUS)不仅在文本方面吸收DeepSeek等通用大模型在处理自然语言、长文本方面的最新进展,还在其他多模态全面深度垂域自研,并通过整合不同模态大模型的能力,可根据不同医疗场景需求孕育出自进化、多模态、自适应的医疗智能体。

那么良医第一个问题来了,当前市场上这么多医疗大模型产品,联影的“元智”能力几何?有什么优势?

先简单看看联影的医疗大模型产品包,这一次,联影推出的并非单独大模型,而是融合文本、影像、视觉、语音、混合等多模态大模型,包括医疗文本大模型、语音大模型、视觉大模型、医疗影像大模型、混合多模态大模型。

良医看来,联影此次推出这样大模型产品的背后,也是基于整个行业的一种深度思考。2024年,医学基础模型的发展主旋律为从通用领域逐步细化到医疗各领域,这一过程不仅包括从通用技术向医疗领域的迁移,还进一步深入特定医疗模态及具体器官的分析中。在此框架下,基础模型在疾病诊断、治疗规划等关键医疗任务中展现出了巨大的应用潜力。

而联影的元智大模型产品的设定,就在于通过多种能力融合、更加垂直的功能、更明确的应用。

那么,联影在打造这样一款产品背后,有哪些优势?

1. 先发优势:联影的积累

关于自身优势的问题,联影董事长薛敏透露了一个新的信息——早在2017年底,就组建了联影智能公司,是行业里面比较早设立的人工智能公司的参与者。

“联影智能公司发展了8年时间,组建了一支强大的团队,在联影智能里面,他们不但推出了一些赋能给设备和赋能给临床的应用的成果,也在3000多家医院得到广泛的使用,无论是在影像诊断还是临床治疗等等这些方面,都有不错的探索,这是我们这10多年走过了一条发展道路。”

这意味着,联影的大模型已经有了广泛的应用,并真正地在诊断和临床上有了成功的案例,这是其他医疗大模型缺少的数据积累能力。

2. 技术端:医学影像能力

医学影像能力一直是联影集团的优势所在,比如元智医疗影像大模型,就是建立在联影基于数千万级医疗影像数据之上打造而来的。

这种数据训练的模型能力,是一般的大模型企业所不具备的,也是一种非常稀缺的能力。

如今,大家都在谈数据幻觉问题,根本上就是垂直行业的数据缺乏问题,而这则构成了联影大模型的独特壁垒。

3. 应用端:结合临床能力

在联影推出的一系列大模型产品中,比较具有代表性的还是医疗混合大模型。

直接将通用基础模型应用于医疗专精任务往往难以取得理想的效果。鉴于此,医疗领域的研究者们开始探索将通用模型的架构和思路迁移到医疗任务中。

这一过程中最突出的问题之一是医学标注数据的稀缺。

联影在“医疗混合多模态大模型”有一个不可忽视的强大优势,就是与临床的结合应用。在应用层,混合多模态大模型可以实现智能化工作流,这一能力意味着,混合多态大模型,能真正地与现实临床场景相结合,并帮助医生完成真实的临床工作。与此同时,还能获取更多、更珍贵的医疗数据。

过去多年的发展,联影已经积累了大量临床数据,和实际工作经验,将这些经验输出给混合大模型,让产品得以完成进一步的训练和优化。

*02十余个智能体,能作用于哪些真实场景?*

在发布大模型产品之余,联影还同步推出了10余款医疗智能体。

在介绍联影智能体产品之前,良医想要先简单解读一下医疗智能体的作用。所谓智能体(Agent),指的就是能够感知环境并采取行动以实现特定目标的代理体。

智能体通过感知环境中的变化(如通过传感器或数据输入),根据自身学习到的知识和算法进行判断和决策,进而执行动作以影响环境或达到预定的目标。

这就意味着,在医疗领域,智能体可以更有针对性地应用在不同的服务场景里。

联影的十余个医疗智能体就是应用在不同场景的具体化产品,比如,影像诊断、临床治疗、医学科教、医院管理、患者服务等多个场景。

如果我们把智能体想象成一个真实存在的人,那么,就可以理解为,联影打造了医院场景内的多个“医疗助手”,这样一来,就能更好的理解联影发布的数个智能体产品了:

助理1号:在影像诊断领域推出了uMetaImaging影像全智能体。

相比专病模型,联影的影像智能体汇聚海量多模态数据,使模型习得更多疾病知识,实现多种疾病用一个模型来进行精准诊断。

具体应用层面,比如在放射科,基于影像大模型,智能体仅需一次胸部CT扫描,即可自动进行胸腔、食管、纵隔、气管与支气管、肺部、骨骼、心脏与大血管等部位 37 种胸部 CT 常见病种和异常的检出,“一扫多查”性能平均AUC可达0.92,相较于SOTA提升超10%。

此外,该智能体还改变传统的阅片工作流。相比过去医生需要在影像工作站完成病灶分析后,再切换至独立报告系统进行文本录入,导致操作流程繁琐且易中断临床思维连贯性。现在得益于语音大模型算法的支持,医生可以通过语音方式进行“诊断报告智能书写”,从而大幅降低重复性操作,提升诊断效率。

助理2号:在临床治疗场景,推出了uAI MERITS手术智能体。

以复杂的外科手术场景为例,uAI MERITS多元手术智能体创新性地整合视频、语音、图像等多模态数据,构建起智慧手术室的“眼、脑、手”协同体系。

其中,uAI Avatar作为“智能大脑”,可通过医生语音指令实时操控手术设备与机械臂;uAI Vision则如同“智慧之眼”,提供精准的空间定位支持,实时感知手术器械位置;“智能手”则对应高精度机械臂,实现自适应的器械传递,多方协同,共同提升手术的精准性与安全性。

助理3号:在医院管理场景、患者管理场景,推出患者服务、医院管理等场景下的智能体。

其中,“有爱小山-病历助手”依托医疗多模态大模型,可一键生成多种类型的医疗报告,重塑报告书写模式。目前该智能体已经在复旦大学附属中山医院、中山大学肿瘤防治中心落地应用;而联影专门打造的uMetaGenesis设备管理智能体,则帮助医院管理者全方位掌握设备生命周期、运行情况,对科室可能发生的设备运行故障提前给予相应的指导建议。

从市场角度看,近几年,智能体浪潮是人们对于大模型的侧重点从技术参数转向落地应用的阶段性产物,是AI技术融入生产生活的一种积极探索。而医疗智能体则是具体到场景的结合。

可以说,联影的几个智能体助理,帮助联影的大模型体系回归到医疗的业务和商业逻辑中,强化了核心业务角色的能力,替代了边缘角色和重复性工作,并通过「新增」的业务场景和角色打开更广阔的想象空间。

如果说元智医疗大模型是联影数智化医疗的坚实底座,那么基于该平台孕育而生的一系列“医疗智能体”则是联影加速医疗AI在应用端大爆发的核心驱动力。

*03AI赋能场景*

*大模型+智能体=**一场生态协同革命*

提及智能体,业内公认,需要具备五个特点,分别是自主性、反应性、主动性、社会性、进化型,这意味着,真正的智能体可以随着时间的推移,不断提高自身的智能和高效性。

那么,联影如何保证智能体的高效和学习能力?

一般而言,有两个触手,**其一就是大模型赋能,其二就是场景落地后带来的不断学习。**这两个方法,刚好能帮助智能体感知、理解、决策、执行为核心能力,最关键的还是,解决临床痛点。

事实上,在医疗经济学中,有一个医疗不可能三角,即高质量、低成本、高效三者不可兼得。而在大模型+智能体的叠加下,联影有望实现“又快又好有经济”。

联影智能联合创始人、联席CEO沈定刚举了一个例子。

“在这些智能体的协同下,每位医生可以看更多的病人、管理更多的家庭,想象一下我们的病人在这样的医生智能体的帮助下去看病,不仅可以看得更快,而且更有人文关怀,最重要的是,费用可能更低。”

那么在临床上,联影如何具体通过AI赋能场景?

联影智融手术室业务总经理陈敏介绍了一个AI赋能精准外科的案例。

过去,联影研发了一系列的专科化的智能外科装备,陈敏介绍,目前已经面世的产品包括神经外科机器人、介入机器人、骨科机器人、精准化内腔镜等设备。

“这些设备的推出之外,更需要我们打造一个智慧化的手术室环境。”

为此,联影推出了AI的信息化赋能手术决策系统,使传统的外科手术室信息化发展到2.0复合手术室时代,再拓展到智慧手术平台3.0时代。

具体手术中,以联影魔方中枢为核心,打造了术前智能诊断,术中精准治疗,术后智慧质控的一站式就诊平台。

此前上海的一个术前诊断中,联影通过AI交互问诊,提供了智能化的智能体问诊交互,通过有爱小山病例助手,使智能电子病历成为现实。

“联影智能化的影像诊断系统,也在术前提供给了医生,有了这些云端的信息,让医生在手术之前完成一站式的全院级术前规划;在术中,通过智能魔方的调用,为手术机器人提供手术路径的规划、手术风险的分析。当遇到一些复杂、无法识别的镜下解剖结构时,可以开启多模态的手术视野,一键提供前所未有的镜下多模态的解剖结构毗邻关系,让医生的决策更加精准。”

联影集团董事长薛敏在主旨演讲环节指出:“从第一天起,联影的AI就从源头与全线多模态诊疗装备紧密融合,未来,这些超级装备将进一步向人机无缝协同的智能体迈进,全方位重构医生及医技人员、患者、设备三者协作的模式。”

通过大模型的技术底座+智能体的场景化赋能,联影的阳谋,就是打造一个智能化的生态环境,不断的嵌入更多智能化功能,让智能体不断的进化。

就像薛敏说的,“未来由文本、影像、混合模型能力驱动的大模型基建,将有机会全面重塑AI产品的应用形态,催生一系列能够持续学习进化的智能体,最终将智能真正转化为生产力。联影元智医疗大模型正是这一转型的基石,将为后续智能体的全面应用爆发奠定坚实基础。”

*04良医财经的思考*

*AI走向“生态协同和场景落地”下半场比拼*

对于AI的作用力,良医看来有三个关键词,有效、可靠、规模化。对于医疗领域而言,AI确实可以使得诊断更加高效化。但前提是提供质量更高、更可靠的产品。这仅仅是第一步。

有了好的产品,第二步是建立生态

“大模型的竞争已经从单纯的 ‘参数竞赛’,逐渐转向围绕‘生态协同和场景落地’的下半场比拼”,薛敏如是说。

而下半场的关键,就在于生态的打造。这直接关系到,人工智能技术的落地,以及商业化应用。

自2022年底OpenAI推出GPT等大模型技术以来,AI的应用进入了一个新的阶段。智能体的出现使得AI的应用从传统的降本增效转向了更高层次的数字生产力。

过去,人工智能主要作为效率工具,帮助企业降低成本,但在增效方面的贡献有限。而现在,智能体的结合使得AI能够在数字世界中发挥更大的商业价值。

事实上,联影的大模型+智能体的生态协同立意很好,但想要落地,需要更多的参与者,不断将生态地基筑牢,同时在产品上,不断迭代。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值