智慧农牧业解决方案
本文主要介绍智慧农牧业解决方案,涵盖其建设背景、需求分析、顶层设计思路、具体解决方案及应用案例等内容,旨在利用现代信息技术推动农牧业升级,解决传统农牧业存在的问题,实现农牧业的智能化、高效化发展。
1. 智慧农牧业建设背景
1.1 国家政策支持
国家高度重视 “三农” 问题,出台一系列政策推动农牧业发展。如 2015 年《中共中央国务院关于加大改革创新力度加快农业现代化建设的若干意见》,从多方面对 “三农” 工作进行部署;2016 年中央一号文件提出大力推进 “互联网 +” 现代农业,促进农村电子商务发展;2018 年中共中央 国务院《关于实施乡村振兴战略的意见》强调构建农村一二三产业融合发展体系 。这些政策为智慧农牧业发展提供了有力的政策导向和支持。
1.2 行业发展任务与目标
农业信息化推进策略包含十大任务、四大目标和三大工程。十大任务涉及建设各类农业相关系统,如农业资源基础数据系统、生产管理指挥系统等;四大目标旨在实现经营网络化、生产智能化、管理高效透明和服务便捷灵活;三大工程即金农工程、农业信息化建设工程和 e 农工程,分别聚焦农业管理、生产经营和服务信息化。这些任务和目标明确了智慧农牧业的发展方向和重点。
1.3 行业现状问题
当前农牧行业信息化存在诸多问题。信息化水平较低,标准规范缺失,导致无法满足农业标准化生产需求,门户浏览量低,信息安全存在隐患且信息不互通。基础设施落后,机械设备现代化程度低,数据采集困难,阻碍新技术推广。同时,缺乏统一的标准规范、平台及专业类应用,限制了农牧行业信息化发展 。
2. 智慧农牧业需求分析
2.1 提升信息化水平需求
为解决农牧行业信息化现存问题,需有效提升信息化水平。建立标准规范体系,明确各方职责,保障系统建设、使用和运营的质量要求。引导涉农牧企业共建,整合资源,共同推动智慧农牧业发展,满足市场对高质量农牧产品和高效农牧业服务的需求。
2.2 具体应用需求
从生产、监管、经营等多领域产生了一系列具体需求。在生产领域,需要实现信息自动采集、远程控制,利用人工智能分析推动农产品标准化生产;监管领域,对农资产品、农产品质量安全监管和执法提出更高要求,需建立完善的追溯体系;经营领域,渴望通过电子商务交易平台实现产销一体化,拓展营销渠道,提高经济效益。
3. 智慧农牧业顶层设计思路
3.1 设计目标
智慧农牧业以云计算为核心,融合物联网、移动互联网等技术,为农牧业参与者提供安全、便捷的智慧化环境。其设计目标具有综合性,借助先进技术提升使用便利性,以服务促管理提升政务水平,以用户需求为导向整合服务,打造全新的农牧业管理与服务形态。
3.2 实现方式
中国联通在政府领导下,依托 “12316” 品牌,按照 1 + 1 + 1 + 2 + N 的架构构建呼和浩特市农牧业信息化综合服务平台。凭借自身在电信、IT、开发和管理等方面的能力聚合,如提供 CT 服务、具备系统集成能力等,打造智慧农牧业平台,满足不同用户需求。
3.3 整体架构
整体架构包括一套标准规范体系、两个中心、N 重服务、一个智慧农牧业云平台和一张农牧业专网。标准规范体系涵盖总体、业务、数据等七个方面,保障系统质量;两个中心即数据中心和智慧调度中心,负责数据处理和业务调度;N 重服务满足各类用户需求;云平台采用公有云与私有云结合模式,提供灵活服务;农牧业专网确保数据传输安全 。
4. 智慧农牧业解决方案
4.1 建设目标
旨在提升生产、监管、经营三大领域的智慧应用水平。建立完善的数据标准规范,包括编码、接口和数据规范;构建系统安全体系,保障数据和网络安全;打造统一门户,实现用户管理、身份认证等功能;提升云平台指挥中心能力,加强数据存储、分析和应用开发处理能力,拓展平台功能。
4.2 总体架构及平台设计
系统安全体系涵盖数据安全、网络安全和容灾备份等方面,云平台采用 SaaS 模式运营,符合等保二级要求,支持公有云与私有云数据中心,用户可通过浏览器或手机轻松使用平台服务,保障了系统的安全性和便捷性。
4.3 平台应用介绍
4.3.1 综合监管类应用
移动农牧业执法实现执法人员现场查询农资产品信息,进行稽查执法;经营者和消费者也可查询农资产品相关信息。农牧业产品信息追溯通过二维码和溯源中心,实现农产品全程溯源,记录生产过程信息,让消费者了解产品来历和种植情况 。移动 OA 方便办公人员处理公文,提高办公效率;视频会议提供高清、便捷的沟通环境;应急指挥实现现场指挥调度和信息实时获取;智慧党建涵盖党员学习、意见收集等功能;舆情监测掌握网络舆情动态;固定资产管理实现资产信息管理和盘点清查。
4.3.2 三农服务类应用
农业服务系统通过部署传感器等设备,监测农业生产环境和作物长势,利用人工智能分析实现智能预警和联动控制。畜牧业服务系统助力产销一体化。农机通为农机手和农机管理部门提供信息服务,提高作业效率。农牧业信息平台展示农牧业各类信息,为决策提供支持。能耗管理采集和监控能耗数据,实现节能减排,同时提供健康服务 。
4.3.3 推广交易类应用
电子商务交易平台搭建交易中心,积累大数据,打通旅游平台,建立农户直销通道。农牧产品价格平台提供农产品价格大数据分析服务,帮助交易主体和政府决策。通过多种渠道提供政务和生活服务,助力企业和农牧户营销推广。“一张图” 整合各类信息,提供便捷服务,如展示旅游景点、农产品销售等信息。
智慧农牧业解决方案通过政策支持、解决行业现存问题、科学的顶层设计和丰富的应用场景,为农牧业的智能化、现代化发展提供了全面的思路和方法,有望推动农牧行业实现新的跨越,满足人们对优质农牧产品和高效农牧业服务的需求,促进农村经济发展和乡村振兴。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。