想象一下,如果有一群具备基本“生存本能”的AI小人被放进一个虚拟世界,这个世界只有有限的土地和食物。这些小人每天要决定是种地养活自己、与他人交易,还是抢夺他人资源,随着时间推移,它们之间会形成何种社会结构?这正是研究者构建的AI社会实验——通过大语言模型(LLMs)驱动的智能体,模拟人类社会关系的形成过程。
这个实验的灵感源自英国哲学家霍布斯提出的“社会契约论”。霍布斯认为,在没有规则的自然状态下,人类会陷入无止境的争斗,最终大家会自愿让渡部分权利给一个强大权威,以换取安全和秩序。研究者想知道:AI智能体是否也会经历类似过程?
可视化了大语言模型智能体展开行动的模拟环境。环境中包含两种类型的资源(食品和土地)。智能体在农业(产生食物),交易(交换资源)或与其他智能体发生冲突(目的是获取更多资源)之间做出选择。他们的主要动机是生存。
研究者设计了一个沙盒环境,智能体在这个环境中必须通过耕作、交易、抢劫等行为来获取有限的资源(食物和土地)。在初始状态下,有9个智能体,每个智能体最初拥有2单位食物和10单位土地,这是一种自然的稀缺状态。
每个智能体都被赋予了心理特征(如攻击性、贪婪、力量等),并拥有记忆功能,能够记住最近的30个行动。通过记忆,智能体可以从过去的经验中学习,调整未来的行为策略。智能体的主要目标是生存,因此它们需要在合作与竞争之间找到平衡。
在模拟中,智能体需要在多种情况下做出决策。主要有两种类型的决策。首先,智能体必须选择当日的主动行动(耕作、交易、抢劫、捐赠)。此外,它们还需要决定如何对针对它们的行动作出反应,例如是否同意其他智能体提出的交易。
每当需要做出决策时,研究者通过OpenAI API请求gpt-3.5-turbo模型提供回应。每次请求中都包含对世界和智能体情况的通用描述和涉及到当天行动的具体提示。
研究者进行了四次相同的试验,没有改变任何智能体或环境参数。对这四次运行结果的一致分析表明,所有智能体最终都屈服于单个共同智能体的权威。
-
初始阶段:智能体之间充满了冲突,抢劫行为频繁发生,反映了霍布斯所说的“自然状态”。
-
中期阶段:智能体开始形成合作关系,交易行为增加,抢劫行为减少。
-
最终阶段:智能体们通过社会契约,将权力交给一个“主权者”,形成了一个和平的社会结构。
从自然状态转变为共同体
此外,研究者还通过调整智能体的参数(如攻击性、贪婪、记忆深度等),观察这些参数对智能体行为的影响。结果表明,智能体的行为确实受到其内在特征和外部环境的共同影响。
大语言模型(LLMs)的出现和人工智能(AI)的进步,为大规模计算社会科学研究提供了机会。本实验展示了在模拟环境中从自然状态成功过渡到共同体的涌现现象。大语言模型智能体社会的进化轨迹与霍布斯理论之间的这种一致性表明,LLMs能够对错综复杂的人际关系进行建模,并有可能复制塑造人类社会的各种力量。通过使我们能够洞察群体行为和新出现的社会现象,LLMs驱动的多智能体模拟,尽管无法模拟人类行为的所有细微差别,但可能具有推动我们理解社会结构、群体动态和复杂的人类系统的潜力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。