ACL 2024 | CPsyCoun: 当大模型遇上心理咨询

目前,使用大型语言模型(LLMs)来辅助心理咨询是一项意义重大且极具挑战性的任务。过往工作聚焦于提升共情对话能力或使LLMs在心理咨询中充当高效助手。然而,现有数据集在咨询专业知识上的匮乏,导致LLMs在专业咨询能力上有所欠缺。此外,针对多轮咨询对话的自动评测仍是一个研究不足的领域。

针对以上问题,来自华中科技大学,中科院深圳先进研究院,澳门大学等多家机构联合推出了心理咨询新框架CPsyCoun,CPsyCoun提出了首个基于心理咨询报告的多轮对话生成,并推出了针对心理咨询模型的多轮对话自动化评测框架。

研究框架

CPsyCoun 框架主要由 Data Generation 和 Automatic Evaluation 两部分构成。

首个基于心理咨询报告的多轮对话生成

为了解决现有数据集在咨询知识方面的不足,CPsyCoun 提出了一种创新的方法——Memo2Demo,它基于心理咨询报告生成多轮对话。该方法通过两个阶段——Memo ConversionDemo Generation——来重建对话,模拟真实的心理咨询流程。

(一)Memo Conversion: 咨询笔记 Counseling Note

  • 心理督导师的笔记——补充专业性(督导咨询师的技术问题

  • 咨询策略、咨询思路、对话过程的隐含思考

  • 咨询目标: Consultation goals

  • 心理咨询技术: Psychological counseling techniques

  • 具体执行计划: Specific execution plan

  • 来访者基本情况:Basic information about the client

  • 来访者的心理问题:Psychological problems of the client

  • 咨询方案: Consultation plan

  • 经验感想与反思: Experience thoughts and reflections

(二)Demo Generation: 咨询框架 Consultation Framework

  • 心理咨询师与来访者的多轮对话

  • 接待询问阶段、诊断阶段、咨询阶段、巩固与结束阶段

  • 接待询问阶段:来访者介绍自己的大致情况,来咨询的目的,想要解决的问题**(来访者的基本情况)**

  • 诊断阶段:咨询师与来访者建立良好的咨访关系,通过摄入性谈话、观察了解等收集来访者的相关信息,明确来访者的问题、产生问题的原因、问题的严重程度,做出明确的判断**(来访者的心理问题)**

  • 咨询阶段:与来访者澄清确认咨询目标以及先后顺序,告知心理咨询技术,帮助来访者分析和解决问题,改变其不适应的认知、情绪或行为,促进来访者的发展与成长**(实施咨询方案)**

  • 巩固与结束阶段:咨询师与来访者对咨询阶段所做的工作进行回顾、总结,使来访者能够把在咨询中获得的成长用于今后的生活中,提高自己的心理健康水平。(经验感想与反思)

多轮对话数据集 CPsyCounD

CPsyCoun 通过 Memo2Demo 方法,生成了多轮咨询对话数据集 CPsyCounD,包含 3,134 个多轮咨询对话。这些对话覆盖了 9 个代表性主题7 种经典心理咨询流派,为心理咨询领域的研究提供了宝贵的资源。

(一)主题

  • 个人成长:Self-growth;涉及个人发展、自我认知和心理成熟,符合个人成长的定义

  • 情绪压力:Emotion&Stress;涉及情绪调节和应对压力的问题

  • 学业教育:Education;涉及教育过程中的行为和心理状态

  • 恋爱婚姻:Love&Marriage;涉及恋爱和婚姻中的情感和关系问题

  • 家庭关系:Family Relationship ;涉及家庭成员之间的互动和关系问题

  • 人际关系:Social Relationship ;涉及个体与他人之间的社交互动和关系

  • 性心理:Sex;涉及性行为、性取向和性心理问题

  • 职业发展:Career;涉及工作场所的压力、心理状态和职业规划

  • 心理疾病:Mental Disease;涉及各种心理疾病的诊断和治疗

(二)咨询流派

  • 精神分析流派:Psychoanalytic Therapy

  • 认知行为流派:Cognitive Behavioral Therapy

  • 人本主义流派:Humanistic Therapy

  • 家庭治疗流派:Family Therapy

  • 后现代主义流派:Postmodern Therapy

  • 综合流派:Integrative Therapy

  • 其他流派:Other Therapies

多轮对话自动化评测框架

CPsyCoun 不仅在数据生成上有所创新,还提出了一个全面的多轮对话自动化评测框架,包括评测指标、评测数据集 CPsyCounE 和自动化评测方法 Turn-Based Dialogue Evaluation。

(一)评测指标

  • 全面性:评估对话是否全面反映了客户的情况和心理问题。

  • 专业性:评估心理咨询师在对话中展现的专业能力。

  • 真实性:评估对话是否符合真实心理咨询场景。

  • 隐私性:确保对话保护了客户的隐私。

(二)评测数据集 CPsyCounE

CPsyCounE来源于Smile数据集,并根据CPsyCoun提出的的9种主题,人工精心挑选了45个多轮对话,构成了专业的评测数据集。

(三)自动化评测方法 Turn-Based Dialogue Evaluation

该方法采用基于回合的评估方式,将多轮对话拆分为当前回合对话和历史对话两部分,通过GPT-4等模型对每个回合的回复进行评分,以实现对多轮心理咨询对话的自动化评估。

实验结果

CPsyCoun通过内部评测和外部评测两方面验证了多轮咨询对话数据集CPsyCounD的高质量。内部评测比较了Memo2Demo与传统的role-play方法,外部评测则基于CPsyCounD数据集微调的CPsyCounX模型与其他大模型进行了比较。

实验结果表明,与传统的role-play方法相比,Memo2Demo在对话的全面性、真实性和专业性方面取得了显著提升。CPsyCounX在专业性和真实性上远超其他模型,仅在全面性上位列第二,同时在心理疾病的话题上所有指标都位列第一。这些实验不仅证明了CPsyCounD数据集的优越性,也为评估心理咨询大模型的能力提供了新的思路。

总结

CPsyCoun的推出,为心理咨询领域带来了新的研究框架。通过创新的对话生成和评估方法,CPsyCoun不仅提升了LLMs在心理咨询中的专业能力,还为自动评估多轮对话提供了有效的框架。我们相信,CPsyCoun将有助于推动心理咨询服务的普及和质量的提升。

我们开源了本工作的方法代码、数据集和模型,希望能推动领域工作的进一步完善与发展。详情请见:

Paper: https://arxiv.org/abs/2405.16433

GitHub: https://github.com/CAS-SIAT-XinHai/CPsyCoun

HuggingFace:https://huggingface.co/CAS-SIAT-XinHai

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值