ChatGPT 的 O1 工作流基于一种称为 Retrieval-Augmented Generation (RAG) 的框架。该工作流的核心理念是通过查询外部知识库来增强生成模型的能力,从而生成更准确、上下文相关的响应。以下是 ChatGPT O1 工作流的详细分解:
1. 输入处理 (Query Handling)
工作流开始于用户输入(查询)的处理阶段。用户输入的文本经过预处理,包括以下几个步骤:
-
文本清理:去除无关符号、特殊字符等,确保输入干净并适合进一步处理。
-
语义分析:通过自然语言处理技术提取输入的关键语义信息。这包括识别查询的主题、上下文,以及可能的答案范围。
2. 检索 (Retrieval Phase)
ChatGPT O1 主要的增强机制在于结合外部知识检索系统(RAG 中的 “Retrieval” 部分),在这个阶段:
-
检索触发:系统根据查询的语义信息,判断是否需要从外部知识库检索信息。通常,只有在现有上下文信息不足时才会触发检索。
-
查询构建:系统生成特定的查询关键词,针对大规模的外部知识数据库(如文档库、网页内容、API 数据等)进行查询。
-
检索候选集:知识检索系统返回一个候选文档或信息集。这些信息可能是相关的上下文、定义、事实,或者与输入查询密切相关的具体细节。
3. 记忆模型 (Memory Model)
ChatGPT O1 的一个关键创新是使用了超长记忆模型:
-
全局理解:该模型能够在上下文跨度较大的情况下,保持对先前对话和历史信息的理解。它不局限于即时对话的内容,而是能综合利用之前的信息,形成对整个对话的“全局理解”。
-
记忆调用:模型能够调用其“记忆”,即它之前处理过的信息片段,来增强当前响应的连贯性和相关性。这在处理复杂、多轮对话时尤为重要。
4. 生成 (Generation Phase)
一旦获取了相关的外部信息和记忆片段,进入生成阶段:
-
上下文合并:系统将外部检索结果与模型的已有知识进行整合。这包括将外部信息与输入查询结合,理解整体上下文,并根据需要重新组织内容。
-
生成响应:在合并后的上下文基础上,模型生成最终的响应。这一步由 ChatGPT 的核心语言生成能力驱动,通过自回归方式逐词生成答案。模型会尝试保证回答的准确性、连贯性和上下文相关性。
5. 反馈循环 (Feedback Loop)
工作流还包括一个反馈循环机制,用于持续优化模型的表现:
-
响应评估:生成的响应可以通过用户反馈或内部的自动化评估机制进行评估。如果模型生成的内容不符合预期,系统可以调整其检索和生成策略,以提高后续响应的质量。
-
记忆更新:根据新的对话内容或反馈,系统可以更新记忆,从而在未来的对话中保持一致性和更深的理解。
6. 优化与调优 (Optimization and Fine-tuning)
ChatGPT O1 工作流中还包含了一些性能优化和模型调优机制:
-
多任务优化:系统不仅生成简单回答,还能够处理复杂任务,如摘要生成、内容翻译、代码解释等。这些任务通过联合优化的方式,提高了生成能力的广泛性。
-
超长文本处理:通过专门优化,ChatGPT O1 可以处理较长的文本输入并生成更具连贯性的长段落输出,这对深入对话和分析型任务尤为关键。
工作流总览
- 用户输入 → 2. 检索是否触发 → 3. 外部信息检索 → 4. 记忆模型调用 → 5. 上下文合并 → 6. 生成响应 → 7. 反馈优化
O1 工作流的优势
-
增强知识库访问:相比于单纯依赖语言模型的生成,O1 工作流通过知识库检索增强了模型回答的准确性和信息深度。
-
全局上下文理解:通过记忆模型,O1 能更好地理解复杂对话中的上下文并产生连贯的回答。
-
持续学习与优化:反馈循环使得系统能够在实际使用中不断改进其性能。
这种架构确保了 ChatGPT O1 既可以处理简单的对话任务,也可以在复杂、信息量大的任务中表现出色。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。