导言
随着人工智能和深度学习技术的发展,医学影像领域的自动化诊断工具逐渐成为研究的热点。尤其在超声心动图(TTE)中,医生通过多视图、多模态的影像数据进行先天性心脏病(CHD)的诊断和分析,常常面临巨大挑战。传统方法依赖专家的经验,对超声影像的分析精度较高,但耗费大量时间,且诊断结果容易受到人为主观因素的影响。此外,单一视图或模态的信息不足以全面反映复杂的心脏结构和功能异常。因此,如何利用深度学习技术,结合多视图和多模态数据,实现自动化、准确的CHD诊断,成为了医学影像领域的重要研究方向。
这篇论文提出了一种基于多视图、多模态深度学习网络的先天性心脏病检测方法,通过对二维TTE和多普勒TTE的图像进行多层次特征提取,并融合不同模态和视图的信息,最终实现了CHD的自动化诊断。该方法不仅提高了诊断的精度,还利用可视化技术,直观展示了模型对高风险区域的关注,为临床医生提供了强有力的诊断支持。
01.论文简介
论文题目:
基于多视图与多模态深度学习网络的先天性心脏病检测
研究领域:
医学影像处理、超声心动图分析、深度学习
论文链接:
https://spj.science.org/doi/10.34133/research.0319
02.论文主要方法
这篇论文提出了一种基于深度学习的多视图、多模态方法,用于从经胸超声心动图(TTE)中检测先天性心脏病(CHD)。该方法通过融合不同视图和模态(2D TTE 和多普勒 TTE)的特征,准确预测病患的心脏健康状况(如房间隔缺损 ASD 和室间隔缺损 VSD)。
输入数据处理:
模态和视图分类:首先,输入的超声图像通过模型自动分类为不同的视图(A4C、SXLAX、PSLAX等)和模态(2D TTE 或 Doppler TTE)。
特征提取:基于卷积神经网络(CNN),每种视图和模态的特征被提取并通过池化层处理,以生成特征嵌入。
多视图、多模态特征融合:
模型通过专门的网络融合来自多视图的特征信息,并通过进一步的特征融合网络,将2D TTE和多普勒TTE模态信息融合,从而更好地捕捉心脏的病变特征。
诊断分类器:
特征融合后,分类器对提取的特征进行分类,最终预测患者是否患有先天性心脏病,以及是房间隔缺损(ASD)还是室间隔缺损(VSD)。
高风险区域可视化:
模型还采用Grad-CAM技术来可视化高风险的心脏区域,帮助医生直观地看到模型的关注重点区域,提供辅助诊断支持。
03
论文针对的问题
在传统超声心动图(TTE)分析中,医生需要手动检查多个视图和模态的图像,这不仅费时,而且容易受主观判断的影响。特别是在先天性心脏病(CHD)的诊断中,准确定位和识别心脏结构异常至关重要。因此,亟需一种高效、自动化的工具,能够结合多视图、多模态信息,实现精确、快速的CHD诊断。
04
论文创新点
多视图多模态融合**:**该方法首次提出通过多视图(不同心脏角度)和多模态(2D与多普勒)的特征融合,增强对心脏结构和功能的全方位理解,提升诊断准确性。
可解释性增强**:**利用Grad-CAM技术提供高风险区域的可视化,使得模型不仅可以做出诊断,还能够为医生提供明确的依据,增加了诊断结果的可解释性。
灵活的特征提取网络**:** 通过设计ResNet18卷积神经网络,模型能够有效提取各类超声图像的特征,即使在部分图像质量较低或视图缺失的情况下,也能保证诊断结果的可靠性。
总结
这篇论文《基于多视图与多模态深度学习网络的先天性心脏病检测》提出了一种结合多视图和多模态信息的创新性深度学习架构,极大提高了先天性心脏病的诊断准确性。该模型不仅可以有效整合来自不同视角和不同模态的特征,还利用了Grad-CAM等技术来增强模型的可解释性。实验结果表明,该模型在多中心的测试数据上表现出色,具有良好的泛化能力,为临床医生提供了强有力的辅助工具。整体而言,该研究为超声影像的智能化诊断提供了新的方向,具有重要的临床应用前景。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。