【论文笔记】基于自监督学习的医学影像异常检测

论文:基于自监督学习的医学影像异常检测

参考:基于自监督学习的医学影像异常检测 - 中国知网

摘要:提出一种基于多模态医学影像的自监督方法, 该方法包括预训练任务和主要任务, 其中预训练任务是多视图分类任务, 主要任务是脑部肿瘤和肝脏的分割。


模型架构
模型架构

SLeM 采用类似 UNet 的网络结构, 包括编码器和解码器两部分,采用高效的空间金字塔块 (efficient spatial pyramid,ESP)。ESP 是一个高效的网络模块, 包含具有空间金字塔结构的点式卷积和扩张卷积. 点式卷积有助于减少计算量, 而扩张卷积可以对特征图进行重采样, 以便从较大的有效感受野中学习特征表征。对于解码器, 金字塔空间池化块(pyramid spatial pooling, PSP)和 CFB 是解码器中的主要块. PSP 得益于对全局信息的提取, 将像素级的特征扩展到设计的全局金字塔中 , 因此其结合了局部和全局特征, 使最终的预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wufen_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值