论文:基于自监督学习的医学影像异常检测
摘要:提出一种基于多模态医学影像的自监督方法, 该方法包括预训练任务和主要任务, 其中预训练任务是多视图分类任务, 主要任务是脑部肿瘤和肝脏的分割。
模型架构

SLeM 采用类似 UNet 的网络结构, 包括编码器和解码器两部分,采用高效的空间金字塔块 (efficient spatial pyramid,ESP)。ESP 是一个高效的网络模块, 包含具有空间金字塔结构的点式卷积和扩张卷积. 点式卷积有助于减少计算量, 而扩张卷积可以对特征图进行重采样, 以便从较大的有效感受野中学习特征表征。对于解码器, 金字塔空间池化块(pyramid spatial pooling, PSP)和 CFB 是解码器中的主要块. PSP 得益于对全局信息的提取, 将像素级的特征扩展到设计的全局金字塔中 , 因此其结合了局部和全局特征, 使最终的预测