今天给大家推荐一个起步能发CCF-B,且非常好出创新点的方向:多模态医学图像融合!
它是一项能将不同成像方式或设备获取的医学图像进行综合处理的技术。在临床诊断、治疗规划、手术导航及疗效评估等领域都有广泛的应用,对提高诊断全面性、准确性等不可替代!比如Nature上的模型ncomms,在准确率、敏感性等方面都远超SOTA;顶会MICCAI上的TFS-Diff模型,则使性能狂飙72.8%……
但其也面临数据不均衡、模型过拟合、计算开销等问题,因而对其的研究成为了迫切需求。且还不算卷,创新机会很多!
输入融合:
也称为早期融合,发生在深度学习网络结构之前,通过将不同模态的数据直接合并为一个特征张量输入到深度神经网络中
Deep learning-based classification of healthy aging controls, mild cognitive impairment and Alzheimer’s disease using fusion of MRI-PET imaging
内容:文章是关于使用深度学习和多模态成像技术来自动检测不同阶段的痴呆症的研究。研究中开发了一个基于Inception-ResNet模型的分类器,通过融合MRI和PET成像数据,实现了对健康控制组(HC)、轻度认知障碍(MCI)和阿尔茨海默病(AD)的高效分类,分类准确率分别为95.5%、94.1%和95.9%。这项研究展示了深度学习模型在自动化分类健康和痴呆症阶段方面的潜力,并可能有助于临床诊断的改进。
单层融合:
涉及在深度学习网络结构之后、最终分类器之前的特征融合,通常包括经典融合和网络融合两种类型
Multimodal cross enhanced fusion network for diagnosis of Alzheimer’s disease and subjective memory complaints
内容:文章介绍了一种名为多模态交叉增强融合网络的深度学习模型,该模型旨在提高对阿尔茨海默病和主观记忆抱怨的诊断准确性。该网络通过结合和融合来自不同神经影像模态(如MRI和PET)的特征,利用深度学习技术来识别和区分AD和SMC患者,旨在为临床提供更准确的诊断工具。
层次融合:
扩展了单层融合,通过在不同层次上融合不同维度的特征,并在融合过程中进行分类
Multimodal information fusion for glaucoma and diabetic retinopathy classification
内容:文章探讨了三种基于深度学习的多模态信息融合策略——早期融合、中间融合和层次融合——在视网膜分析任务中的应用,特别是针对青光眼和糖尿病视网膜病变的分类。研究者们发现,与传统的早期和中间融合方法相比,他们开发的一种层次融合方法能够更好地结合不同维度的特征,并探索模态间的相关性,从而在两个数据集上都取得了最佳的分类性能,为临床诊断提供了更好的途径。
基于注意力的融合:
利用注意力机制来提取和合并特征,这种架构不依赖于任何先前的融合架构,特别是在视觉-语言任务中表现出色的Transformer结构
Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model
内容:文章介绍了一种名为TFS-Diff的条件扩散模型,用于同时实现三模态医学图像融合和超分辨率。该模型基于随机迭代去噪过程的扩散模型生成,开发了简单的目标函数和融合超分辨率损失函数,有效评估融合过程中的不确定性,并确保优化过程的稳定性。此外,文章还提出了通道注意力模块,用于从不同模态中有效整合关键信息,避免多次图像处理导致信息丢失。在公共哈佛数据集上的广泛实验表明,TFS-Diff在定量和视觉评估方面均显著优于现有的最先进方法。
输出融合:
也称为决策级融合或后期融合,每个模态使用单独的深度学习网络结构提取特征并做出决策,然后将结果合并为最终决策
Multimodal deep learning for Alzheimer’s disease dementia assessment
内容:文章介绍了一种多模态深度学习框架,用于评估阿尔茨海默病(AD)痴呆症。该框架能够连续执行多个诊断步骤,以识别具有正常认知(NC)、轻度认知障碍(MCI)、AD和非AD痴呆症(nADD)的个体。研究展示了能够接受包括人口统计学、医疗史、神经心理测试、神经影像学和功能评估在内的灵活组合的临床信息的一系列模型,并与执业神经学家和神经放射科医师的诊断准确性进行了比较。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。