在当今科技飞速发展的时代,人工智能(AI)正以前所未有的速度改变着我们的生活和工作方式。
AI agent,作为人工智能领域的一个重要分支,正逐渐展现出巨大的潜力。它不仅能够自主地与环境互动,实现特定的目标,还能够将人类的想象转化为现实,让人人都成为产品的创造者。
红熊 AI多模态大模型中台集成了 Agent 实现方式,本文从AI agent 的发展现状、优势以及未来的发展趋势,聊一聊Aagent如何实现:想象即可变成现实,人人都是产品?
1、AI agent 的发展现状
深度强化学习是一种机器学习类型,其中智能体通过执行动作和查看结果来学习如何在环境中产生行动。
所以强化学习(RL)是一个解决 AI agent 挑战的强大框架,案例上有 AlphaGo 和 OpenAI Five 著名的成功指导。
当然这里,也有一个问题,强化学习始终困扰于缺乏归纳偏见和环境限制的问题。人类视觉 - 运动或物理先验的注入一直都很有挑战性,这意味着强化学习模型常需要数百万次交互从零开始训练。因此,在物理、真实世界环境中学习一直充满挑战,毕竟机器人交互速度慢且收集成本高,这是当下主要问题
虽然物理环境和游戏世界各有其局限,但数字世界(以语言为主要载体)提供了独特的可扩展环境和学习优势。例如,WebShop 是一个拥有数百万种产品的购物网站环境,其中智能体需要阅读网页、输入查询并点击按钮来进行购物,就如同人类一样。
这样的数字任务挑战了智力的多个方面,包括视觉理解、阅读理解和决策制定,并且可以轻松扩大规模。大型语言模型的提示可以直接应用于 WebShop 或任何 ChatGPT 插件任务,这在传统的强化学习领域是难以实现的。随着更多 API 被整合到环境中,将会出现一个极其多样化、开放性极高的数字工具和任务生态系统,催生出更通用、更有能力的自主语言智能体。
2、AI agent 在各个领域的应用
2.1 医疗行业:随着医疗数据的不断增长和对精准医疗的需求增加,人工智能在医疗领域的应用具有巨大潜力。
应用包括
辅助诊断:AI agent 可以分析医学影像(如 X 光、CT 扫描、MRI 等),帮助医生更快、更准确地发现病变。例如,通过对大量影像数据的学习,AI 可以识别出早期癌症的迹象,提高诊断的准确率和及时性。据统计,在某些癌症的早期检测中,AI 辅助诊断的准确率可提高 15%至 20%。
疾病预测:利用患者的病历数据、遗传信息和生活方式等因素,AI agent 可以预测疾病的发生风险。例如,预测糖尿病患者的并发症风险,提前采取干预措施,降低患者的病情恶化风险。
医疗机器人:可以进行微创手术、康复治疗等任务,提高手术的精度和安全性,减少患者的痛苦和恢复时间。例如,达芬奇手术机器人在复杂的外科手术中表现出色,手术创口更小,恢复时间更短。
2.2 金融行业:金融数据的复杂性和海量性使得人工智能在金融领域有广泛的应用空间。
应用包括
风险评估:AI agent 可以分析大量的金融数据,包括市场趋势、企业财务报表、信用记录等,评估投资风险和信用风险。例如,通过对企业财务数据的分析,预测企业的违约风险,为银行等金融机构提供决策依据。
智能投顾:根据客户的风险偏好、财务状况和投资目标,为客户提供个性化的投资建议。据市场研究机构预测,到 2025 年,全球智能投顾市场规模将超过 1.4 万亿美元。
欺诈检测:实时监测金融交易,识别异常交易行为,防止欺诈和洗钱活动。例如,通过分析交易模式和用户行为,AI 可以快速发现可疑交易,及时采取措施。
2.3 教育行业:个性化学习和教育资源的优化配置是教育发展的趋势,AI agent 可以满足这些需求。
应用包括
个性化学习:根据学生的学习进度、能力和兴趣,为学生提供个性化的学习计划和教学内容。例如,通过分析学生的答题数据和学习行为,AI 可以推荐适合学生的学习资源和练习题,提高学习效果。
智能辅导:为学生提供在线辅导,解答问题,提供学习建议。例如,智能辅导系统可以实时回答学生的问题,帮助学生解决学习中的困难。
教育管理:协助学校进行教学管理,包括课程安排、学生评估、教师绩效评估等。例如,通过分析学生的学习数据和教师的教学数据,优化课程设置和教学方法。
2.4 交通运输行业:交通拥堵、安全问题和能源效率是交通运输行业面临的挑战,AI agent 可以提供解决方案。
应用举例:
智能交通管理:通过分析交通流量数据,优化交通信号控制,缓解交通拥堵。例如,在一些城市,智能交通系统可以根据实时交通状况调整信号灯时间,提高道路通行效率。
物流优化:优化物流配送路线,提高物流效率,降低成本。例如,通过分析货物的重量、体积、目的地等因素,AI 可以为物流公司提供最佳的配送路线。
2.5 制造业:制造业的智能化转型是提高生产效率和质量的关键,AI agent 可以发挥重要作用。
应用包括
质量检测:通过图像识别和数据分析技术,对产品进行质量检测,提高检测的准确性和效率。例如,在电子产品制造中,AI 可以检测电路板上的缺陷,提高产品质量。
预测性维护:分析设备运行数据,预测设备故障,提前进行维护,减少设备停机时间。据统计,采用预测性维护技术可以降低设备维护成本 20%至 30%。
生产优化:优化生产流程,提高生产效率和资源利用率。例如,通过分析生产数据,AI 可以调整生产参数,提高生产线的产能。
2.6 零售行业:消费者需求的个性化和快速变化使得零售行业需要更加智能的解决方案。
应用包括
智能推荐:根据消费者的购买历史、浏览记录和偏好,为消费者提供个性化的商品推荐。例如,电商平台通过 AI 算法为用户推荐感兴趣的商品,提高用户的购买转化率。
库存管理:通过分析销售数据和市场趋势,优化库存管理,降低库存成本。例如,AI 可以预测商品的销售趋势,合理安排库存,避免缺货和积压。
无人零售:利用图像识别、传感器技术和人工智能算法,实现无人值守的零售商店,提高购物的便利性和效率。例如,一些无人便利店已经在城市中出现,为消费者提供 24 小时的购物服务。
2.7 能源行业:能源的可持续发展和高效利用是全球面临的重要问题,AI agent 可以提供创新的解决方案。
应用包括
智能电网:通过分析电力需求和供应数据,优化电网运行,提高能源利用效率。例如,智能电网可以根据实时电力需求调整发电和输电策略,降低能源损耗。
能源预测:预测能源需求和价格波动,为能源企业的决策提供依据。例如,通过分析历史数据和天气等因素,AI 可以预测未来的能源需求,帮助能源企业合理安排生产和储备。
能源管理:协助企业和家庭进行能源管理,降低能源消耗。例如,智能能源管理系统可以根据用户的行为习惯和设备运行状态,自动调整能源使用策略,实现节能降耗。
2.8 农业行业:农业生产面临着资源短缺、环境污染和气候变化等挑战,AI agent 可以提高农业生产的效率和可持续性。
应用包括
精准农业:利用传感器和数据分析技术,实现精准施肥、灌溉和病虫害防治,提高农业生产的效率和质量。例如,通过分析土壤湿度、养分含量和作物生长状况等数据,AI 可以为农民提供精准的施肥和灌溉建议。
农产品质量检测:通过图像识别和数据分析技术,对农产品进行质量检测,确保食品安全。例如,AI 可以检测水果的成熟度和病虫害情况,提高农产品的质量和市场竞争力。
农业机器人:可以进行播种、除草、收割等任务,提高农业生产的效率和减轻农民的劳动强度。例如,一些农业机器人已经在农田中应用,实现了自动化的农业生产。
2.9 媒体和娱乐行业:消费者对个性化内容和沉浸式体验的需求不断增加,AI agent 可以满足这些需求。
应用包括
内容推荐:根据用户的兴趣和行为,为用户推荐个性化的电影、音乐、书籍等内容。例如,视频平台通过 AI 算法为用户推荐感兴趣的视频,提高用户的观看时长和满意度。
虚拟主播:利用人工智能技术生成虚拟主播,为用户提供新闻播报、娱乐节目等内容。例如,一些虚拟主播已经在网络上走红,受到了广大用户的喜爱。
游戏开发:AI agent 可以在游戏中扮演角色,与玩家互动,提高游戏的趣味性和挑战性。例如,一些游戏中的 NPC(非玩家角色)已经采用了人工智能技术,使得游戏更加真实和有趣。
2.10 通信行业:通信技术的快速发展和用户对高质量通信服务的需求,使得 AI agent 在通信领域有广泛的应用前景。
应用包括
网络优化:通过分析网络流量数据,优化网络资源分配,提高网络性能和用户体验。例如,通信运营商可以利用 AI 技术优化 5G 网络的覆盖和性能,满足用户对高速数据传输的需求。
智能客服:为用户提供在线客服服务,解答问题,处理投诉。例如,通过自然语言处理技术,AI 客服可以理解用户的问题,提供准确的回答和解决方案。
通信安全:检测和防范网络攻击,保护通信网络的安全。例如,AI 可以分析网络流量,识别异常行为,及时发现和阻止网络攻击。
3、AI agent 的优势
一台能自主行动的机器在各个领域都有巨大的潜力来减轻人类的劳动负担。
从机器人吸尘器到自动驾驶汽车,这些机器通常被部署在物理环境中,配备任务专用算法和应用范围较窄。而像 AI agent 这样的语言智能体则提供了通用解决方案,用于自动化广泛的数字任务,尤其在当前大部分人类生活和工作都在数字化环境中进行的时代,这一点尤为重要。
AI agent 能够将人类的想象转化为现实,让人人都成为产品的创造者。每个人都可以根据自己的需求和创意,通过与 AI agent 的交互,创造出个性化的产品和服务。例如,通过向 AI agent 提供一些描述和要求,它可以生成一篇文章、一幅画、一首音乐等。
传统的产品创造往往需要专业的知识和技能,以及大量的时间和资源。而 AI agent 的出现,使得创造变得更加容易和便捷。即使没有专业的知识和技能,也可以通过与 AI agent 的交互,实现自己的创意和想法。正如乔布斯所说:“创新区分领导者和追随者。”AI agent 为每个人提供了创新的机会,让人人都有可能成为领导者。
4、AI agent 实现“想象即可变成现实,人人都是产品”的途径
像与网页和软件交互来填写各种表格、重复的 Excel 操作或客户支持任务,或者修复代码错误等任务,都涉及到多轮信息查找和试错。
这些数字活动只需要几小时的培训就能让新手上路,然而对人类来说却是重复且枯燥的,同时也可能因疲劳造成错误。
AI agent 可以通过学习和优化,实现这些任务的自动化,提高工作效率和质量。一旦实现这一点,预计这些工作中相当部分将会被自动化,可能标志着由语言智能体驱动的自动化浪潮的初次兴起。
当然这个提升,需与数字工具及人类互动工作的协作和沟通技巧
这类任务包括在查询和记录信息的同时进行销售、扮演项目经理角色进行会议记录和任务委派,或者作为个人助手在各种数字平台上协同工作并记录用户偏好。
这些任务不仅需要执行各种数字例行程序的鲁棒性,还需要类似人类的沟通技巧例如语用学、心理理论、个性理解等,以确保与人类或智能体合作伙伴能够成功并持久合作。
AI agent 可以通过不断地学习和训练,提升自己的协作和沟通技巧,为人类提供更好的服务。
包括访问在线文献和其他信息来起草报告;通过在知识网络中导航来调查研究领域并提出研究想法;通过与逻辑环境(如 Coq)交互来发现数学知识。这些创造性工作类似于科学家、艺术家、作家的工作,除了需要强大的数字和沟通技巧,还需要内在的动力来为自己定义任务并追求长期、稀缺回报的探索。
AI agent 可以通过与人类的互动和合作,激发自己的创造力和探索精神,为人类带来更多的创新和价值。
5、AI agent 发展面临的挑战
虽然 AI agent 在很多方面都表现出了强大的能力,但是它的可靠性和安全性仍然是一个挑战。
例如,在一些关键领域,如医疗、金融等,如果 AI agent 出现错误,可能会导致严重的后果。因此,如何提高 AI agent 的可靠性和安全性,是一个亟待解决的问题。
随着 AI agent 的发展,也带来了一些伦理和法律问题。AI agent 创造的产品的版权归属问题、AI agent 的决策是否符合伦理道德等。这些问题需要我们在发展 AI agent 的同时,加强伦理和法律的研究和监管,确保 AI agent 的发展符合人类的利益和价值观。
其次人类与 AI agent 的关系问题AI agent 的出现,可能会改变人类与机器的关系。例如,人类可能会过度依赖 AI agent,导致自己的创造力和思考能力下降。因此,如何建立良好的人类与 AI agent 的关系,是一个需要我们认真思考的问题。
最后结论红熊 Ai 总结下:
1、AI agent 作为人工智能领域的一个重要分支,正逐渐展现出巨大的潜力。它不仅能够提高工作效率,实现个性化创造,降低创造门槛,还能够将人类的想象转化为现实,让人人都成为产品的创造者。
2、AI agent 的发展也面临着一些挑战,如可靠性和安全性问题、伦理和法律问题、人类与 AI agent 的关系问题等。我们需要通过加强技术研发、完善伦理和法律规范、加强人类与 AI agent 的合作等策略,应对这些挑战,推动 AI agent 的健康发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。