1. AutoGen(微软)
1.1 特点
-
作为该领域最早且最受欢迎的微软框架,主要涉及用户(User)和助手(Assistant)两类智能体。在其用户 - 助手智能体模型中,用户智能体提供提示或需求,助手智能体负责生成并执行代码,且能将结果反馈给用户或其他智能体。
-
专注于代码任务的多智能体编排,但也能处理其他任务,在交互过程中可引入人类指导,并有微软强大的社区支持。
1.2 局限
-
不够直观,对非程序员不友好。
-
本地大语言模型(LLM)设置复杂,通常需代理服务器。若不是软件开发任务,表现较为平庸。
2. CrewAI
2.1 特点
-
因极其直观和易于设置,成为人们快速构建多 AI 智能体任务演示的首选。
-
主要依赖提示编写,创建新智能体并加入生态系统非常便捷,非技术用户也能轻松上手,借助 LangChain 集成,可与大多数 LLM 提供商及本地 LLM 良好协作。
2.2 局限
-
灵活性和定制化程度有限,仅适用于基本用例,不适合复杂编程任务。
-
智能体交互过程存在一些漏洞,社区支持不足。
3. LangGraph(LangChain)
3.1 特点
-
基于 LangChain 构建,采用有向循环图理念,不只是单纯的多 AI 智能体框架。
-
高度灵活且可定制,几乎支持任何多智能体编排应用,作为 LangChain 扩展,社区支持强大,能与开源 LLM 及各类 API 良好配合。
3.2 局限
-
文档不够详尽。
-
对非程序员或编程初学者不友好,需要一定编程技能,尤其是对图和逻辑流的理解能力。
4. OpenAI Swarm
4.1 特点
- 是新手入门多 AI 智能体的理想之选,重点聚焦于简化智能体创建及智能体间的上下文切换(即交接),创建简短演示极为容易。
4.2 局限
- 仅支持 OpenAI API 的 LLM,不适用于生产部署,灵活性欠佳,社区支持薄弱,甚至无法在 GitHub 上反馈问题。
5. Magentic-One(微软)
5.1 特点
-
微软新推框架,类似 Swarm,对非程序员友好且易于运行。
-
自带 5 个默认智能体,包括管理智能体、网页浏览(WebSurfer)、文件管理(FileSurfer)、代码编写与分析(Coder)、控制台访问(ComputerTerminal)等功能智能体。
-
基于 AutoGen 构建,更具通用性,还包含用于分析智能体性能的 AutoGenBench 工具。
5.2 局限
-
对开源 LLM 的支持复杂。
-
不够灵活,更像应用而非框架,目前文档和社区支持近乎缺失。
6. 框架选择建议
-
软件开发:AutoGen 是不二之选,其在代码生成和复杂多智能体编码工作流方面表现卓越。
-
新手入门:OpenAI Swarm 和 CrewAI 较为合适,它们操作简单,无需复杂设置,能让新手快速上手。
-
复杂任务处理:LangGraph 凭借高灵活性和定制性,专为高级用户打造,可应对复杂逻辑编排。
-
开源 LLM 支持:LangGraph 表现突出,能与开源 LLM 无缝集成并支持多种 API,CrewAI 也可满足基本需求。
-
社区支持:AutoGen 社区能有效解决疑难问题。
-
快速搭建演示:CrewAI 搭建迅速、直观,适合快速创建智能体的任务,OpenAI Swarm 和 Magentic-One 虽也不错,但社区支持稍显不足。
-
成本效益:Magentic-One 预封装设置和通用型设计可能节省初始成本,OpenAI Swarm 和 CrewAI 也在考虑范围内。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。