前言
本文将介绍如何通过 AnythingLLM 与 Ollama 结合,搭建一个具备私有知识库能力的 AI 应用。
AnythingLLM 简介
AnythingLLM 是一款开箱即用的一体化 AI 应用,支持 RAG(检索增强生成)、AI 代理等功能。它无需编写代码或处理复杂的基础设施问题,适合快速搭建私有知识库和智能问答系统。
主要特性:
-
多种部署方式:支持云端、本地和自托管部署。
-
多用户协作:支持团队协作,适用于企业知识管理和客户支持。
-
多模型支持:兼容 OpenAI、Anthropic、LocalAI 等主流大模型。
-
多向量数据库支持:支持 Pinecone、Weaviate 等向量数据库。
-
多文件格式处理:支持 PDF、TXT、DOCX 等文件格式。
-
实时网络搜索:结合 LLM 响应缓存与对话标记功能,提供高效的文档管理和智能问答能力。
下载与安装
AnythingLLM 提供了 Mac、Windows 和 Linux 的安装包,用户可以直接从官网下载并安装。
安装完成后,首次启动时会提示配置偏好设置。用户可以根据需求进行设置,后续也可以随时修改。
配置 LLM 提供商
在 AnythingLLM 的设置页面,可以通过 LLM 首选项 修改 LLM 提供商。本文使用本地部署的 Ollama 和 qwen2.5:14b 模型。配置完成后,务必点击 Save changes
按钮保存设置。
❝
注意: 关于 Ollama 的部署与使用,请参考之前的教程。
上传文档
在聊天界面中,用户可以创建多个工作区。每个工作区可以独立管理文档和 LLM 设置,并支持多个会话(Thread),每个会话的上下文也是独立的。
点击上传图标,可以管理当前工作区的知识库。AnythingLLM 支持以下三种方式上传文档:
-
本地文档上传:直接上传本地文件。
-
Web 链接:通过 URL 上传网页内容。
-
数据链接:从 GitHub、GitLab 等平台导入数据。
Documents 界面
在 Documents
界面,用户可以管理已上传的文档,并通过下方的上传按钮或拖拽方式上传新文档。
❝
提示: 如果需要上传整个目录及其子目录中的文档,直接将目录拖拽到上传按钮上即可。
Data Connectors
Data Connectors 功能支持从 GitHub、GitLab 仓库或网站爬取数据。用户只需输入仓库地址和 Token,即可导入指定目录或网页内容。
上传示例
以下是一个从 GitHub 仓库导入数据的示例:
-
输入仓库地址和 Token。
-
通用 File Ignores 配置导入的目录。
-
点击导入按钮,等待数据加载完成。
导入完成后,用户可以在 Documents
界面选中文档,并点击 Move to Workspace
将其添加到工作区。
添加到工作区后,点击 Save and Embed
,将文档内容转换为向量检索所需的嵌入数据结构。此过程可能会消耗较多 CPU 资源,具体时间取决于文档数量。
查询知识库
将文档添加到工作区后,用户可以通过设置聊天模式调整大模型的回复方式:
-
聊天模式:结合 LLM 的通用知识和上传文档的上下文生成答案。
-
查询模式:仅基于上传文档的上下文生成答案。
在聊天窗口中,用户可以直接提问。大模型会基于文档内容生成答案,并标注答案来源。
使用 Agent 能力
AnythingLLM 支持 AI 代理功能,用户可以通过 Agent 完成特定任务。除了官方提供的默认 Agent(如 Scrape websites
),还支持通过社区添加自定义 Agent。
配置 Agent
在设置页面的 代理技能 中,用户可以管理 Agent。默认开启的 Agent 无法关闭,其他 Agent 需要手动启用。
使用示例
以下是一个使用 Scrape websites
Agent 的示例:
- 在聊天界面输入
@agent
+ 提示词,启动 Agent 会话。
- Agent 会通过 Web Scraping 工具爬取指定页面并返回结果。
❝
注意: 启动 Agent 会话后,无需每次输入
@agent
。退出 Agent 会话可通过切换聊天页面或输入/exit
命令。
当会话提示 Agent session complete
时,表示已退出 Agent 会话。
结语
通过 AnythingLLM 和 Ollama 的结合,我们成功搭建了一个具备私有知识库能力的 AI 应用。私有知识库不仅可以让 AI 回答通用问题,还能基于私有文档(如企业内部资料、图书等)生成更精准的答案。
❝
注意: 随着知识库中文档数量的增加,回答的准确性可能会受到影响。建议将文档分散到多个工作区,以提高检索效率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。