【text2sql】利用大模型进行Text2SQL任务朴素过程及相关开源数据集

Text2SQL是将自然语言文本(Text)转换成结构化查询语言SQL的过程,属于自然语言处理-语义分析(Semantic Parsing)领域的子任务。

KBQA实践思路:

Text2SQL过程流程图

  • 朴素方法过程

    Text2SQL朴素过程

  • 优化方法过程:RAG+LLM

    Text2SQL优化过程

Text2SQL常见开源数据集

  • 英文

  • 中文

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Text2SQL技术实现与应用 Text2SQL是一种自然语言处理(NLP)技术,旨在将人类可读的自然语言查询转化为结构化查询语言(SQL),从而让用户无需编写复杂的技术代码即可访问和操作关系型数据库中的数据[^1]。 #### 文本到SQL转换的关键组件 为了有效执行这一过程,通常涉及以下几个核心模块: - **解析器(Parser)**:负责理解输入语句的意义并将其分解成更易于管理的部分。这一步骤对于捕捉用户的意图至关重要。 - **映射(Mappper)**:建立自然语言表达式与相应SQL语法之间的桥梁。它会考虑上下文信息以及特定领域内的术语来构建合适的查询命令。 - **生成器(Generator)**:最终形成有效的SQL指令集,这些指令能够被目标数据库引擎所识别并执行以返回所需的结果集合[^2]。 #### 实现方法概述 存在多种途径可以达成从文本至SQL的成功转变,其中包括但不限于以下几种策略: - **基于模板的方式**:通过预定义一系列模式化的句子形式及其对应的SQL片段来进行匹配替换;这种方法简单直接但灵活性较差,在面对新颖或者复杂的请求时表现不佳。 - **机器学习驱动的方法**:利用神经网络模型训练得到一个可以从大量样本中学得规律并将新问题映射为正确答案的能力。此类方案往往具备更强泛化性能但也伴随着更高的开发成本和技术门槛。 - **混合架构**:结合上述两种思路的优点——先采用规则导向机制初步过滤筛选再辅之以深度学习算法做精细化调整优化,以此获得更好的平衡效果[^3]。 #### 应用实例分析 在实际应用场景中,像Data-Copilot、Chat2DB这样的工具已经成功实现了Text2SQL的功能,并广泛应用于各个行业之中。特别是在金融领域里,这类平台可以帮助分析师快速获取市场动态情报或是辅助决策支持系统完成风险评估等工作任务。它们不仅简化了日常运营流程还提高了工作效率和服务质量。 ```python import sqlite3 from langchain import SQLDatabaseChain, AgentExecutor def create_sql_query(natural_language_input): db_chain = SQLDatabaseChain.from_llm(llm=..., database=sqlite3.connect('example.db')) sql_output = db_chain.run(natural_language_input) return sql_output ``` 此Python函数展示了如何使用`langchain`库创建一个简单的Text-to-SQL接口,其中省略了一些具体配置参数以便突出重点概念说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值