最近在做一个需求,需要对网站上的功能针对部分角色做权限控制。然而,我手头并没有一个完整的角色清单,也不知道要限制的角色名称叫什么。
于是,我向产品同学求助🤔:“可以在xx系统里导出一份完整的权限清单吗?”
产品同学非常爽快地答应了,很快给了我一份 500 多行的 Excel 文档。
我打开一看,发现虽然权限种类并不多,大概只有20个,但每个权限对应了很多用户,导致文档内容非常冗长,有 500 多行。
其实,我需要的东西很简单:把表里的20个权限名称相关信息提取出来,并转化成我想要的数据结构而已。
正当我准备手动筛选、复制粘贴时,突然灵光一闪:这不就是机器该干的活吗?我作为一个人,为什么要抢机器的饭碗?
于是,我打开了DeepSeek,输入了以下提示词:
读取这个文件的前1000行,把这个文件的 [角色标识、角色名称、角色id] 去重后,分别发给我,按照以下格式呈现:
const rolesMap = {
riskcontrol: {
name: 'riskcontrol',
name_zh: '风控管理员',
id: '38211566'
},
...
}
即:
不到 1 分钟,DeepSeek 就帮我生成了我想要的数据! 是不是很 6 !
有人可能会觉得,这种操作国内的其他大模型也能做到。起初我也是这么认为的,于是我用阿里的「通义千问」也试了一下,结果出乎意料地不尽如人意。
结果只输出了部分角色清单,非常不准确。
而 DeepSeek 输出的数据结构非常精准,完全符合我的需求。尤其是它能真正给你带来生产力的时候,还是情不自禁的为其的表现赞叹。
在这个例子中,它做到了:
-
高效处理复杂数据:无论是几百行还是几千行的数据,DeepSeek都能快速提取关键信息,并按照你想要的格式输出。
-
精准去重:手动去重容易出错,而DeepSeek可以自动帮你完成,确保数据的唯一性。
-
灵活的输出格式:你可以自定义输出的数据结构,DeepSeek会根据你的需求生成对应的代码或文本。
最重要的是结果的准确无误,所以, DeepSeek 是真的强,再也不用的跋涉千山万水的到地球另一面去使用 ChatGPT,非常方便。
无论你是数据分析师、开发工程师、金融分析师,还是其他老师,它都能给你带来实实在在的生产力。
最后,我把效果发到了群里和产品同学,表达了我的使用成果,产品同学也发出了和我一样的赞美:“哈哈,居然还能这么用,太牛了!”
朋友们,下次再遇到数据处理或数据分析的问题,记得使用 DeepSeek! 它不仅能让你的工作效率提升 10 倍,还能让你从繁琐的手动操作中解放出来,专注于更有价值的工作。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。