摘要
大型语言模型(LLMs)通过利用大量的临床数据和医学文献,极大地推动了医学问答(QA)的发展。然而,医学知识的快速发展和手动更新特定领域资源的劳动密集型过程可能会削弱这些系统的可靠性。我们通过自适应医学图-检索增强式问答(AMG-RAG)来应对这一挑战,这是一个全面的框架,能够自动化构建和持续更新医学知识图谱(MKGs),整合思维链(CoT)推理,并检索当前的外部证据(例如,PubMed、WikiSearch)。通过动态链接新发现与复杂的医学概念,AMG-RAG不仅提高了准确性,还增强了医学查询的可解释性。
在MEDQA和MEDM-CQA基准测试上的评估展示了AMG-RAG的有效性,在MEDQA上达到了74.1%的F1分数,在MEDM-CQA上达到了66.34%的准确率,超越了同类模型以及规模大10到100倍的模型。重要的是,这些改进是在不增加计算开销的情况下实现的,突显了自动化知识图谱生成和外部证据检索在提供最新、可信医学见解中的关键影响。
https://arxiv.org/abs/2502.13010
核心速览
研究背景
-
研究问题
:这篇文章要解决的问题是大型语言模型(LLMs)在医学问答(QA)任务中,尽管能够利用大量的临床数据和医学文献,但由于医学知识的快速演变和手动更新领域特定资源的劳动密集型过程,这些系统的可靠性会受到挑战。
-
研究难点
:该问题的研究难点包括:确保LLMs的事实最新性和准确表示复杂的医学概念关系;传统知识图构建和维护的劳动强度大、耗时耗资源,特别是在医学领域,新发现迅速使旧信息过时。
-
相关工作
:该问题的研究相关工作有:使用领域特定语言模型(如BioBERT、PubMedBERT)处理生物医学任务;RAG框架(如MMED-RAG)增强LLMs;Chain-of-Thought(CoT)推理提高QA性能;基于知识图的方法(如KG-Rank)增强长形式QA的事实准确性。
研究方法
这篇论文提出了自适应医学图谱-检索增强生成(AMG-RAG)框架,用于解决医学问答中的知识更新和复杂关系表示问题。具体来说,
-
知识图谱构建:首先,提出了一种自动构建医学知识图谱(MKG)的方法,结合大型语言模型(LLM)代理和专用医学搜索工具。该方法从用户查询中提取医学术语,使用搜索工具检索相关信息,并使用LLM推断关系。
-
关系推断:LLM代理根据节点的描述和检索到的文档提取节点之间的关系。
-
知识图谱构建:将节点、描述、关系和置信度分数整合到知识图中。该图支持医学QA,通过突出关键医学概念及其相互关系、启用高效的医学知识检索和推理、为图中的每个建立的关系提供置信度度量来增强医学QA。
-
自适应医学图-检索增强生成(AMG-RAG)管道:AMG-RAG管道包括以下步骤:
-
问题解析:使用LLM代理从用户查询中提取医学术语。
-
节点探索:对每个术语查询知识图以检索相关信息,并应用置信度阈值。
-
思维链生成:使用LLM为每个实体生成推理轨迹。
-
答案合成:聚合推理轨迹并传递给最终答案生成器,生成输出答案及其整体置信度分数。
实验设计
-
数据集
:使用MEDQA和MedMCQA数据集进行基准测试。MEDQA数据集是一个自由形式的、多选题的开放域QA数据集,旨在测试证据检索和复杂推理。MedMCQA数据集提供了更广泛的医学专业知识问题类型。
-
模型实现
:使用GPT-4o-mini作为实现的核心组件,利用其大约8B参数的能力进行高级推理、RAG和结构化知识集成。
-
知识图构建
:动态构建知识图,将搜索项、上下文信息和从PubMed引擎检索的关系整合到每个问题中。使用Neo4j数据库存储整个图,支持高效分析和检索。
结果与分析
-
MEDQA数据集:在MEDQA数据集上,AMG-RAG实现了74.1%的F1分数,超过了类似大小的RAG方法和10到100倍更大的最先进的模型。
-
MedMCQA数据集:在MedMCQA数据集上,AMG-RAG实现了66.34%的准确率,甚至超过了更大的模型如Meditron-70B和Codex 5-shot CoT。
-
搜索工具和CoT推理的影响:集成PubMedSearch和WikiSearch等搜索工具显著提高了AMG-RAG的性能。移除CoT推理或知识图集成会导致准确率和F1分数大幅下降。
-
不同问题领域的性能:在不同问题领域(如神经学和遗传学)中,AMG-RAG模型一致表现优于其他方法,展示了其在快速演变和高知识密集领域的适应性和鲁棒性。
总体结论
这篇论文介绍了AMG-RAG,一种先进的QA系统,动态构建MKG并集成复杂的推理和外部领域特定搜索工具。该模型在准确性和推理能力方面显著提高,特别是在医学问答任务中,超越了其他类似大小或大10到100倍的模型。通过使用结构化知识表示和高级推理框架,AMG-RAG在高度竞争和高度演变的领域中树立了新的基准。
论文评价
优点与创新
-
自适应医学知识图谱(AMG-RAG)
:提出了一个自动构建和持续更新的医学知识图谱框架,结合了链式思维推理和外部证据检索,显著提升了医疗问答的准确性和可解释性。
-
显著性能提升
:在MEDQA和MEDMCQA基准测试中,AMG-RAG分别取得了F1分数74.1%和准确率66.34%,超过了同等规模和10到100倍更大的模型。
-
无需额外微调或高推理成本
:这些改进是通过无缝集成知识图谱和领域特定搜索工具实现的,无需额外的微调或更高的推理成本。
-
动态知识图谱构建
:通过结合大型语言模型代理和领域特定搜索工具,自动生成富描述元数据、置信度得分和相关性指示的医疗知识图谱。
-
链式思维推理
:引入了链式思维推理,增强了推理的可解释性和准确性,特别是在多跳推理任务中表现出色。
-
外部证据检索
:通过PubMed和WikiSearch等工具进行外部证据检索,提供了更全面的证据支持,提升了回答的准确性和可靠性。
不足与反思
-
依赖外部搜索工具
:在构建医学知识图谱时,依赖于外部搜索工具可能会引入延迟,但这种情况仅在第一次从头开始构建知识图谱时发生。
-
非医学任务的适用性
:尽管在医学领域表现出色,但该模型在非医学任务上的适用性尚未探索。
-
结构化权威医学知识源的需求
:目前,AMG-RAG从多种来源检索信息,包括研究文章和医学教科书。然而,在临床决策中,治疗指南作为标准化诊断和治疗协议的重要参考,未来工作应专注于整合这些结构化访问源,以确保符合循证医学。
关键问题及回答
问题1:AMG-RAG框架如何动态构建医学知识图谱(MKG),并将其应用于医学问答任务中?
AMG-RAG框架通过结合大型语言模型(LLM)代理和专用医学搜索工具来动态构建医学知识图谱(MKG)。具体步骤如下:
-
节点提取
:使用LLM代理从用户查询中提取医学术语,这些术语作为图中的节点。
-
关系推断
:LLM代理根据节点的描述和检索到的文档提取节点之间的关系,并为这些关系分配置信度分数。
-
知识图构建
:将节点、描述、关系和置信度分数整合到知识图中。该图支持医学QA,通过突出关键医学概念及其相互关系、启用高效的医学知识检索和推理、为图中的每个建立的关系提供置信度度量来提高QA系统的效率和准确性。
在医学问答任务中,AMG-RAG框架将MKG与检索增强生成(RAG)和链式思维(CoT)推理相结合,以提高答案的准确性和完整性。具体流程包括问题解析、节点探索、思维链生成和答案合成。
问题2:AMG-RAG在MEDQA和MedMCQA数据集上的性能如何,与其他模型相比有何优势?
在MEDQA数据集上,AMG-RAG实现了74.1%的F1分数,超过了类似大小的RAG方法和10到100倍更大的最先进的模型。在MedMCQA数据集上,AMG-RAG实现了66.34%的准确率,甚至超过了更大的模型如Meditron-70B和Codex 5-shot CoT。
AMG-RAG的优势主要体现在以下几个方面:
-
高效的知识图谱构建
:通过自动构建和更新医学知识图谱,AMG-RAG减少了手动维护知识图的劳动强度和成本,同时确保与最新医学进展保持一致。
-
强大的推理能力
:结合链式思维(CoT)推理和外部证据检索,AMG-RAG能够进行更复杂的推理和多步推理任务,提高了答案的准确性和完整性。
-
适应性
:AMG-RAG能够动态适应医学知识的快速演变,通过持续更新知识图和集成外部搜索工具,确保系统在面对新问题时仍能保持高效和准确。
问题3:集成PubMedSearch和WikiSearch等搜索工具对AMG-RAG的性能有何影响?
集成PubMedSearch和WikiSearch等搜索工具显著提高了AMG-RAG的性能。具体表现为:
-
准确率提升
:通过引入外部搜索工具,AMG-RAG能够访问更广泛和多样化的外部证据,从而提高了答案的准确率。例如,在MEDQA数据集上,集成PubMedSearch后的准确率为73.92%,而仅使用内部数据源的准确率为67.16%。
-
F1分数提升
:外部搜索工具的集成不仅提高了准确率,还提升了F1分数,表明模型在综合评估指标上也表现更好。
-
推理能力增强
:外部搜索工具提供的额外证据有助于模型进行更复杂的推理和多步推理任务,进一步增强了模型的推理能力。
总之,集成PubMedSearch和WikiSearch等搜索工具显著提高了AMG-RAG在医学问答任务中的性能和推理能力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。