KG-RAG:知识图谱增强的检索增强生成技术
近年来,大型语言模型(LLM)如GPT-4和Claude 2在自然语言处理领域取得了突破性进展,极大地改变了我们获取和处理信息的方式。然而,这些模型在处理需要专业知识的复杂查询时仍面临一些挑战。为了解决这个问题,研究人员提出了一种创新的方法 - KG-RAG(Knowledge Graph-based Retrieval Augmented Generation),即基于知识图谱的检索增强生成技术。
KG-RAG的核心理念
KG-RAG是一个任务无关的框架,旨在将知识图谱(KG)的显式知识与大型语言模型(LLM)的隐式知识相结合。这种方法的核心在于从知识图谱中提取'提示感知上下文',即:
足以回应用户提示的最小上下文。
通过这种方式,KG-RAG为通用LLM注入了优化的领域特定知识,从而显著提高了其在专业领域的表现。
KG-RAG的工作原理
KG-RAG主要包含三个关键阶段:
-
知识图谱构建: 将非结构化文本转换为结构化的知识图谱。这一步骤对于保持信息质量至关重要,如果处理不当可能会影响后续阶段。
-
检索: 通过一种名为'探索链'(Chain of Explorations, CoE)的新型检索算法来完成。CoE利用LLM的推理能力在知识图谱中探索节点和关系,确保检索过程既相关又准确。
-
响应生成: 生成连贯且符合上下文的回答。