分享一个在DeepSeek本地部署+联网搜索+知识库的方法。这个方法呢对比前面更加快捷还能联网搜索。
操作系统:Windows11 24H2
准备工具:Ollama、Edge(微软浏览器)、Page Assist(扩展应用)
看过前面关于DeepSeek本地部署的朋友直接跳转(二)可视化
(一)、Deepseek本地安装搭建
操作步骤:
第一步:下载与安装Ollama
https://ollama.com/download
2、推荐使用motrix或迅雷下载(使用IDM快给我整噶皮了)。
https://github.com/ollama/ollama/releases/latest/download/OllamaSetup.exe
3、启动Ollama安装程序,点击Install进行安装,安装前建议关闭防火墙或其他安装软件。
4、快捷键按WIN+R,启动运行,在运行中输入:“CMD” 以管理员身份启动命令窗口,在窗口中输入“Ollama”,然后回车键(Enter)即可。出现如下图提示表示安装成功。
第二步:获取 Deepseek 模型
模型地址
https://ollama.com/search
1、点击“模型”地址后进入模型第一个就是deepseek-r1模型,如不显示则在上方搜索框输入:“deepseek-r1”进行搜索即可。
2、打开“deepseek-r1” 模型后,可以看到,如1.5b\7b\8b\14b\32b\70b\671,具体该如何参考如下表格:(建议先选用小模型,下载会比较慢)
3、结合我自己的配置选择14b(显卡比较弱), 选择14bh后在右侧复制其命令代码。
如:复制“ollama run deepseek-r1:14b”。
4、回到 4 的运行窗口,在窗口中鼠标右键将复制的下载命令输入运行窗口中,然后回车键,等待下载完成。
注意:下载安装默认在系统C盘,检查c盘空间是否有足够空间,否则会失败…
5、完成模型下载。
6、在新的cmd 窗口 输入:“ollama list” 查询已下载模型。
7、进行一次本地测试,你是谁?你讲一下台湾历史?
8、常用命令总结:一些常用Ollama 命令,使用时将 {model_name} 替换成具体模型名称。
(二)、配置Page Assist可视化
操作步骤:
第一步:获取 Page Assist扩展
1、打开Edge(微软浏览器)在地址中输入:“edge://extensions/”,进入开发者模式,在扩展区——获取扩展。
(浏览器不能下扩展在文末提供)
2、在搜索框中输入“Page Assist”进行搜索,点击获取即可安装。
3、点击添加扩展。
4、在扩展中固定Page Assist 应用。
第二步:配置Page Assist应用
1、在浏览其扩展中启用Page Assist应用,在右上角点击设置。
2、在设置中将语言改为简体中文。
3、点击左侧管理模型,查看已经安装的模型,如未加载进行添加模型。
4、回到对话框中,选择安装的Deepseek-r1模型,在下方输入“ 你是谁?”即可检查是否部署完成。
5、开始联网搜索?
(三)、Deepseek配置本地知识库
操作步骤
第一步:下载词嵌入模型
1、打开Ollama 官网,点击模型,再搜索框中输入:“dmeta-embedding-zh”,点击确定进行搜索。
2、打开后点击右侧复制图标将命令复制。
3、在命令窗口中鼠标右键粘贴上面复制命令:“ollama pull shaw/dmeta-embedding-zh
”,然后Enter键盘,等待下载完成。
4、完成词嵌入模型的下载后有如下提示。
第二步:配置词嵌入模型
1、在扩展Page Assist应用中,点击右侧设置按钮,左侧RAG设置,将下载的嵌入词模型添加进来,再点击保存。
第三步:导入本地数据
1、点击右上角设置按钮,左侧导航栏管理知识,点击添加新知识。
2、将提前准备的知识库文档内容加载进来,设置名称将文档加载进来。
3、加载完成后点击提交。
4、回到对话框,测试知识库,发送问题时勾选设置本地知识库即可根据知识库进行解答。
5、启用知识库。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。