一、核心概念解析
1.1 嵌入模型(Embedding)
作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:
- 文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92
- 跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜
1.2 向量模型(Vector Model)
作为嵌入技术的下游应用体系,主要包含两大方向:
- 判别式模型:基于SVM/神经网络的分类器(情感分析准确率可达92.3%)
- 检索式模型:利用向量相似度计算(如Faiss索引加速)实现毫秒级语义搜索
二、主流模型性能全景对比
2.1 全球模型排行榜(MTEB基准)
参考地址:MTEB Leaderboard - a Hugging Face Space by mteb
排名 | 模型名称 | Zero-shot | 参数量 | 向量维度 | 最大令牌数 | 任务平均得分 | 任务类型平均的愤怒 | 双语挖掘 | 分类 | 聚类 | 指令检索 | 多标签分类 | 成对分类 | 重排序 | 检索 | 语义文本相似度(STS) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | gemini-embedding-exp-03-07 | 99% | Unknown | 3072 | 8192 | 68.32 | 59.64 | 79.28 | 71.82 | 54.99 | 5.18 | 29.16 | 83.63 | 65.58 | 67.71 | 79.40 |
2 | Linq-Embed-Mistral | 99% | 7B | 4096 | 32768 | 61.47 | 54.21 | 70.34 | 62.24 | 51.27 | 0.94 | 24.77 | 80.43 | 64.37 | 58.69 | 74.86 |
3 | gte-Qwen2-7B-instruct | ⚠️ NA | 7B | 3584 | 32768 | 62.51 | 56.00 | 73.92 | 61.55 | 53.36 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98 |
4 | multilingual-e5-large-instruct | 99% | 560M | 1024 | 514 | 63.23 | 55.17 | 80.13 | 64.94 | 51.54 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81 |
5 | SFR-Embedding-Mistral | 96% | 7B | 4096 | 32768 | 60.93 | 54.00 | 70.00 | 60.02 | 52.57 | 0.16 | 24.55 | 80.29 | 64.19 | 59.44 | 74.79 |
6 | GritLM-7B | 99% | 7B | 4096 | 4096 | 60.93 | 53.83 | 70.53 | 61.83 | 50.48 | 3.45 | 22.77 | 79.94 | 63.78 | 58.31 | 73.33 |
7 | text-multilingual-embedding-002 | 99% | Unknown | 768 | 2048 | 62.13 | 54.32 | 70.73 | 64.64 | 48.47 | 4.08 | 22.80 | 81.14 | 61.22 | 59.68 | 76.11 |
8 | GritLM-8x7B | 99% | 57B | 4096 | 4096 | 60.50 | 53.39 | 68.17 | 61.55 | 50.88 | 2.44 | 24.43 | 79.73 | 62.61 | 57.54 | 73.16 |
9 | e5-mistral-7b-instruct | 99% | 7B | 4096 | 32768 | 60.28 | 53.18 | 70.58 | 60.31 | 51.39 | -0.62 | 22.20 | 81.12 | 63.82 | 55.75 | 74.02 |
10 | Cohere-embed-multilingual-v3.0 | ⚠️ NA | Unknown | 1024 | Unknown | 61.10 | 53.31 | 70.50 | 62.95 | 47.61 | -1.89 | 22.74 | 79.88 | 64.07 | 59.16 | 74.80 |
11 | gte-Qwen2-1.5B-instruct | ⚠️ NA | 1B | 8960 | 32768 | 59.47 | 52.75 | 62.51 | 58.32 | 52.59 | 0.74 | 24.02 | 81.58 | 62.58 | 60.78 | 71.61 |
12 | bilingual-embedding-large | 98% | 559M | 1024 | 514 | 60.94 | 53.00 | 73.55 | 62.77 | 47.24 | -3.04 | 22.36 | 79.83 | 61.42 | 55.10 | 77.81 |
13 | text-embedding-3-large | ⚠️ NA | Unknown | 3072 | 8191 | 58.92 | 51.48 | 62.17 | 60.27 | 47.49 | -2.68 | 22.03 | 79.17 | 63.89 | 59.27 | 71.68 |
14 | SFR-Embedding-2_R | 96% | 7B | 4096 | 32768 | 59.84 | 52.91 | 68.84 | 59.01 | 54.33 | -1.80 | 25.19 | 78.58 | 63.04 | 57.93 | 71.04 |
15 | jasper_en_vision_language_v1 | 92% | 1B | 8960 | 131072 | 60.63 | 0.26 | 22.66 | 55.12 | 71.50 | ||||||
16 | stella_en_1.5B_v5 | 92% | 1B | 8960 | 131072 | 56.54 | 50.01 | 58.56 | 56.69 | 50.21 | 0.21 | 21.84 | 78.47 | 61.37 | 52.84 | 69.91 |
17 | NV-Embed-v2 | 92% | 7B | 4096 | 32768 | 56.25 | 49.64 | 57.84 | 57.29 | 41.38 | 1.04 | 18.63 | 78.94 | 63.82 | 56.72 | 71.10 |
18 | Solon-embeddings-large-0.1 | ⚠️ NA | 559M | 1024 | 514 | 59.63 | 52.11 | 76.10 | 60.84 | 44.74 | -3.48 | 21.40 | 78.72 | 62.02 | 55.69 | 72.98 |
19 | KaLM-embedding-multilingual-mini-v1 | 93% | 494M | 896 | 512 | 57.05 | 50.13 | 64.77 | 57.57 | 46.35 | -1.50 | 20.67 | 77.70 | 60.59 | 54.17 | 70.84 |
20 | bge-m3 | 98% | 568M | 4096 | 8194 | 59.54 | 52.28 | 79.11 | 60.35 | 41.79 | -3.11 | 20.10 | 80.76 | 62.79 | 54.59 | 74.12 |
2.2 细分领域冠军模型
中文场景TOP3
- BGE-M3:支持8192长文本,金融领域语义相似度达87.2%
- M3E-base:轻量级模型推理速度达2300 QPS
- Ernie-3.0:百度知识图谱融合模型,摘要生成ROUGE-L值72.1
跨语言模型TOP3
- BGE-M3:支持108种语言混合检索,跨语言映射准确率82.3%
- Nomic-ai:8192 tokens长文本处理能力,合同解析效率提升40%
- Jina-v2:512维轻量化设计,边缘设备内存占用<800MB
2.3 企业级选型策略
image.png|550
三、技术架构创新趋势
3.1 *动态维度输出技术*
- Matryoshka嵌套向量:通过训练模型输出256-1792维的灵活向量(如BGE-M3模型),实现不同精度需求的按需裁剪,资源利用率提升40%
- 稀疏注意力机制:NV-Embed采用潜在注意力层替代传统均值池化,使关键语义捕获效率提升58%
3.2 *跨模态统一空间构建*
- 多模态对齐架构:CLIP-like模型(如阿里云M6)实现文本-图像-音频的联合嵌入,医疗影像报告分析准确率提升至89%
- 层次化表征学习:分层编码器将对象拆解为原子特征(颜色/形状/纹理),支持组合式生成(如AI绘画中的风格迁移)
3.3 *上下文理解增强*
- 双向时序建模:在Transformer架构中引入时间戳嵌入,实现动态上下文感知(如金融合同版本差异识别)
- 因果推理嵌入:通过因果图网络构建因果向量空间,解决传统相似度计算的逻辑谬误问题
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。