RAG优化之Embedding模型选型重要依据:mteb/leaderboard榜

近期RAG 应用不断涌现,它们的性能表现各具特色。尽管我们可以通过多个方面(例如查询改写、图像数据处理、分块策略、元数据管理、密集检索、稀疏检索、结果重排、排序融合、提示词优化以及上下文压缩等)逐步优化这些应用,但在选择 SOTA(State-of-the-Art)模型时,参考开源排行榜依然是必不可少的步骤。mteb/leaderboard 是一个极为有用的资源,它能帮助您了解并选择符合您需求的多语言文本生成模型。例如,在RAG系统中,无论是中文还是英文的向量化模型、重排模型或摘要模型的选择,都可以通过该榜单获得直观且量化的参考依据。

MTEB Leaderboard

MTEB(Multilingual Text-to-Text Evaluation Benchmark)是一个多语言文本嵌入的评估基准,旨在评估和比较不同多语言文本生成模型的性能。排行榜页面展示了各种模型在多个任务上的表现,这些任务可能包括但不限于翻译、摘要、问答等。

  • https://huggingface.co/spaces/mteb/leaderboard

  • C-MTEB(Chinese Massive Text Embedding Benchmark)中文语义向量评测基准

  • 评测任务:包括涵盖112种语言的58个数据集

在 MTEB 的排行榜页面上,可以看到:

  • 不同模型的名称:列出参与评估的各种模型。

  • 各项任务的得分:每个模型在不同任务上的性能评分。

  • 综合排名:根据各项任务的得分对模型进行综合排名。

这个排行榜页面对于研究人员和开发者非常有用,因为它提供了:

  • 模型性能的直观对比:帮助选择最适合特定任务的模型。

  • 最新进展的跟踪:了解当前多语言文本生成领域的最新进展和技术趋势。

  • 基准测试的参考:为新模型的开发和评估提供基准。

如何使用
  • 查看模型性能:浏览排行榜,了解不同模型在各个任务上的表现。

  • 获取模型信息:点击模型名称或链接,可以跳转到模型的详细页面,获取更多信息和使用方法。

  • 参与评估:如果你有自己的模型,可以按照 MTEB 的评估标准提交模型进行测试,加入排行榜。

了解任务相关概念

TASK CATEGORY(任务类别)

枚举值中文翻译含义解释
s2s句子到句子任务涉及将单个句子转换或处理成另一个句子。
s2p句子到段落任务涉及将单个句子转换或处理成段落。
p2p段落到段落任务涉及将段落转换或处理成另一个段落。

TASK TYPE(任务类型)

枚举值中文翻译含义解释
Retrieval检索从大量数据中检索出相关信息。
Reranking重排根据某种标准重新排序数据。
STS语义文本相似度评估两个文本之间的语义相似度。
Summarization摘要生成文本的简短摘要。
InstructionRetrieval指令检索检索与特定指令相关的信息。
Speed速度评估处理或响应的速度。
BitextMining双语文本挖掘从双语文本中挖掘信息。
Classification分类将数据分配到预定义的类别中。
MultilabelClassification多标签分类为数据分配多个类别标签。
Clustering聚类将数据分组,使得同一组内的数据点相似度高。
PairClassification配对分类对成对的数据进行分类。

TASK SUBTYPE(任务子类型)

枚举值中文翻译含义解释
Article retrieval文章检索从大量文章中检索出与查询相关的文档。
Conversational retrieval对话检索检索与对话上下文相关的信息或回复。
Dialect pairing方言配对识别和匹配不同方言之间的对应关系。
Dialog Systems对话系统构建能够与用户进行自然对话的系统。
Discourse coherence话语连贯性评估或生成连贯、逻辑一致的长篇话语。
Language identification语言识别识别文本所使用的语言。
Linguistic acceptability语言可接受性评估文本是否符合语言学的规范。
Political classification政治分类根据政治倾向对信息进行分类。
Question answering问答回答用户提出的问题。
Sentiment/Hate speech情感/仇恨言论识别文本中的情感倾向或仇恨言论。
Thematic clustering主题聚类将文本根据主题进行分组。
Scientific Reranking科学重排对科学文献或信息进行重新排序。
Claim verification事实核查验证声明或信息的真实性。
Topic classification主题分类将文本按照主题进行分类。
Code retrieval代码检索检索与编程问题相关的代码片段。
Cross-Lingual Semantic Discrimination跨语言语义区分区分不同语言中相似词汇的语义差异。
Textual Entailment文本蕴含判断一个句子是否能够从另一个句子逻辑上推导出来。
Counterfactual Detection反事实检测识别和处理反事实或假设性陈述。
Emotion classification情感分类对文本中表达的情感进行分类。
Reasoning as Retrieval推理检索通过检索相关信息来辅助推理过程。
Duplicate Detection重复检测识别和处理重复或相似的内容。

C-MTEB(Chinese Massive Text Embedding Benchmark)榜单是专门用来评估中文Embedding模型的多任务混合评测榜单,包含了Classification、Clustering、Pair Classification、Reranking、Retrieval、STS六种任务类型,共35个公开数据集。

其中,Retrieval作为检索场景下最常用、最重要的测试任务,被广泛应用与大模型应用的落地场景,Retrieval任务包括查询语句和语料库,对于每个查询,从语料库中查询最相似的top-k个文档,使用BEIR相同的设置,nDCG@10是主要指标。

Retrieval是C-MTEB中的一个任务方向,共包含8个中文文本数据集,涉及医疗、政策、电商、娱乐等各个方面。数据集主要有三部分组成:query、corpus、dev,其中query为中文问题,corpus为中文文档,包括了query的回答,该任务主要就是从海量corpus中检索出与query最为相关的内容。

Retrieval任务的8个子任务

  • Ecom:中文电商领域检索任务;

  • Medical:中文医疗领域检索任务;

  • Covid:中文政策文件类检索任务;

  • Video:中文娱乐视频领域检索任务;

  • T2:来源于搜索引擎的段落排序中文基准测试;

  • Dureader:来源于百度搜索引擎的段落检索任务;

  • Mmarco:中文微软问答文摘检索测试;

  • Cmedqa2:中文社区医疗问答测试

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 当前流行的Embedding模型及其排名 合合信息的Embedding模型MTEB中文单上取得了第一名的成绩[^1]。这表明该模型在中国市场的文本嵌入任务中表现出色。 MTEB(Massive Text Embedding Benchmark)是一个综合性的评估体系,用于衡量不同文本嵌入模型的表现。此平台提供了详细的排行单,涵盖了多种语言环境下的多个数据集测试结果[^3]。通过访问[MTEB GitHub页面](https://github.com/embeddings-benchmark/mteb)或[Hugging Face空间](https://huggingface.co/spaces/mteb/leaderboard),可以查看最新的全球范围内各款Embedding模型的具体评分与名次变化情况。 对于希望构建基于检索增强生成(Retrieval-Augmented Generation, RAG)的应用程序而言,在选择合适的Embedding模型时需考虑具体应用场景以及可用资源状况。不同的Embedding模型具有各自的特点和适用范围;因此,针对特定的任务需求来挑选最适宜的预训练模型,并对其进行必要的调整优化是非常重要的举措之一[^2]。 ```python import requests from bs4 import BeautifulSoup def fetch_mteb_leaderboard(): url = "https://huggingface.co/spaces/mteb/leaderboard" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 假设表格位于第一个<table>标签内 table = soup.find('table') rows = table.find_all('tr')[1:] # 跳过表头 leaderboard = [] for row in rows: columns = row.find_all('td') model_name = columns[0].text.strip() score = float(columns[-1].text.strip()) leaderboard.append((model_name, score)) return sorted(leaderboard, key=lambda x: x[1], reverse=True) # 获取并打印最新排行前十位 top_models = fetch_mteb_leaderboard()[:10] for idx, (name, score) in enumerate(top_models, start=1): print(f"{idx}. {name}: {score:.4f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值