生成式AI教育图谱2024

教育科技博主Laurence Holt更新了2024版的生成式AI教育产品图谱(点击阅读原文)。经过一年多生成式AI的快速发展,教育领域迸发了大量新产品,但一个核心问题在于,“听上去挺好,但在什么场景中发生?”举个例子,AI具备不错的课程内容改编能力,可以把一堂常规的、讲授式的历史课堂改写为一个涵盖角色扮演活动的互动式课堂,但老师在什么场景下使用这个AI工具,在什么时间去上这堂课呢?这个问题犹如房间里大象,一些AI能力可能体验不错,但往往缺乏【空间】落地。

这篇文章对2024年生成式AI教育产品,从老师办公、课堂教学、家庭和校外四个空间视角做了拆解,分析这些产品在中国市场的可落地性。

全能型教师助手:MagicSchool.ai, Eduaide.ai, Playlab.ai

01

角色:老师

环节:课前备课

1)典型任务:做课 (Lesson generation)

AI工具可以帮助老师根据课程标准、教学大纲生成教案、教学活动。随着新课标的逐步实施,对学科实践和跨学科实践要求的进一步强化,AI工具可能会对老师备课起到更多的帮助。

_影响因素:_考试会不会跟着变?或者说新课标能在多大程度上影响考试内容导致老师对做课产生巨大需求?一种可能发生的情况是,虽然新课标的实施会影响老师的教学方式和内容,但因为考试变化不大,所以老师只会在之前的课程上做小幅调整和制作一些新课以满足新课标的要求。

此外,全新的教案或课件往往并不是老师最需要的,对现有课程进行调整对老师的帮助可能更大。目前的问题在于AI工具生成的课程内容随机性太强,往往“改多了”。

典型产品:

Nolej, DiffIt, MyLessonPal, Copilot, teachology.ai, Curipod, Atypical

这些产品可以提供从快速生成教案和教学资源到个性化教学内容的功能,帮助老师基于课程主题/目标生成教案,课堂练习,学习指南和课件(PPT)。

2)典型任务:特色教学内容 (Activity-specific content)

教学内容不单覆盖抽象的知识概念,还可以包含更具互动性的教学活动让学生参与,比如让学生在历史事件中扮演历史人物。但设计活动式、主题式、沉浸式教学内容相当耗费时间,AI工具可以帮助老师大幅提高生成这类教学内容的效率。

_影响因素:_这一类教学内容有可能激发学生的学习兴趣,但对于提高成绩并无帮助且拖累教学效率。

_典型产品:_Teaching Tools, character.ai, Mizou, Mindjoy

3)典型任务:更个性化的课程内容(Responsive content)

AI可以帮助老师生成更符合学生特点,如学习习惯、经验和价值观的课程内容,从而提高学生的参与度。

_典型产品:_Reconstruction Onyx, Planning Period

02

角色:老师、学生

环节:学习管理

4)典型任务:学习项目管理 (Tracking student project work)

在项目式学习中,管理、监督每一个/组学生的项目进度是一项颇为繁琐的工作,此外老师还要考虑项目内容和成果是否贴合了特定的教学标准。AI则可以提高老师对项目式学习的管理效率。

此外,配合学习管理系统(LMS),AI还可以帮助学生分析项目进展,提供帮助以及提醒老师学生是否需要帮助。

_典型产品:_PROJECT LEO

5)典型任务:学习进度管理 (Tracking student progress)

AI工具能够根据学生的长期学习数据,为老师提供针对每个学生的详细学习进度报告。通过这些报告,老师不仅可以了解学生在课程中的具体表现,还能识别学生可能需要额外帮助的领域,从而帮助老师优化教学计划,分析哪些教学内容需要迅速加强,哪些可以稍后再复习。

AI还可以将不同工具和评估中的数据综合起来,帮助老师判断哪些学习单元在继续教学之前必须解决差距,哪些可以等到以后再解决,哪些内容如果因为时间不足而需要放弃。

影响因素:

  • 数据源。能够形成智能报表的关键因素在于对学生作业、考试批改数据的准确统计,但是目前考试、作业的批改还要进一步提升准确率。

  • 及时性。学生的学习问题都是当下发生的,要不然现在就解决,要不然就是完整的一个学期结束后返工,此时标准化考试给出的结论更有意义。持续的、连贯的、智能的学习进度追踪在什么场合下使用呢?

6)典型任务:学情分析(Analysis of student data)

在商业中,如果企业可以更好了解它的客户往往能获取更大的收益;在教学中,如果老师更了解他的学生也可以驱动更精准的辅导。AI可以帮助老师了解学生学习进度情况,课堂参与度,薄弱知识点(以及如何提高),避免低效的重复练习(对于学生已经充分掌握的知识)。

_影响因素:_一是准不准,二是好不好用。目前AI能力对于分析学生的学情能力尤其是理科知识点的分析能力还不尽如人意,在智能之外还需要大量的人工去打标签;此外尤其是受限于中国大陆还大量使用纸质试卷、作业,结构化的数据分析还需要大量工程开发去提高产品使用体验,从而让老师愿意去用。

_典型产品:_Doowii,Strived.io

03

角色:老师、学生

环节:评估与考试

7)典型任务:个性化的评价标准 (Rubric generation with model answers)

AI工具可以帮助老师在设计复杂的学术任务时,例如学生策划的关于大萧条的博物馆展览,通过分析以往的学生作品和任务描述,自动生成适合的评分标准。这样的工具不仅节省了老师准备评分标准的时间,还能帮助学生明确他们的任务要求,从而提高他们在课程中的学术表现。

创建详细的评分标准通常很耗时并需要教育经验,但AI工具可以快速生成,同时确保这些标准既全面又能适应不同层次的学生表现。

_影响因素:_专属的评价标准需要有专属的课程作为支撑。因此这一场景的实现取决于供应商能否为学校提供配套的特色课程。

8)典型任务:改作业 (Feedback on student work)

相较于长期、系统性的评估,帮老师改作业大为实用。AI可以帮助老师在学生提交作业后立即生成详细的学习反馈,包括对学生的论文论点、推理清晰度、事件理解和作业完整性的分析。这种即时反馈能够让学生及时了解自己的学习状况,并进行改进。

AI支持下的作业反馈可以根据教师的风格进行个性化调整,例如在论文作业中让学生更注重论点阐述而不是简单的引用。同时,AI工具的应用也减轻了教师的工作负担,使他们能够更有效地处理大量学生的作业。

影响因素:

  • 改的对。目前AI在语言类学科表现不错,可以结合学科、作业或考试要求对作业进行比较完善的批改。但理科批改的准确率和传统题库方案相比还有很大不足。

  • 手写识别。但是哪怕是语言类学科,对学生的手写作业的批改能力也有缺陷。比如学生可能只是字迹潦草,而不是拼写错误,但是AI可能会认为是一个拼写错误,导致后面的批改内容都发生错误。

_语言类作业:_Grammarly, Ethiqly, Pressto, Writable, Class Companion, Vexis, GoGrader

其他批改系统:

Brisk, AutoMark, EnlightenAI, Quill, sAlnaptic, Mathnet, Snorkl, Floop

9)典型任务:整体性评估 (Holistic assessment)

AI可以帮助老师通过长期和全面地跟踪学生的学习项目,如火箭设计和建造学习项目,实现更立体化的学生评估。比如通过整合学生的作品集、视频和其他项目式学习成果,AI不仅能生成涵盖学生多方面技能的详细评估报告,还能向教师提供关于学生在科学、技术和创新方面成长的连续数据。

这种方法通过真实世界的项目任务代替传统的考试和测试,更全面地反映学生的综合能力和创造力。

_影响因素:_无论是创新项目式学习还是学科学习,长期系统性的评估对于提高考试成绩有影响吗?如果考试是半年一次、一年一次,那么过程性评价会非常重要,因为通过这种方式可以了解学生的学习情况,并对教学做对应的调整。

但是普遍情况是考试的周期是一月数次甚至一周一次,老师更需要的是当下即时的发现学生的薄弱点,重点辅导也好或者建议学生寻求额外补习也罢,问题需要的是得到当下的解决方案而非长期评价。

10)典型任务:思维能力评估 (Identification of student thinking)

当老师让学生去解决一个开放式问题,比如完成一个项目式学习任务,AI可以快速对学生的任务进行评估,比如通过对学生作业的详细分析,反馈学生的概念理解和计算错误,为老师提供关于学生思维方式的直观了解。这种方法使得学生在面对开放式数学问题时,能够得到关于其思维过程的具体反馈,帮助他们理解问题解决的多样性和复杂性。

AI还可以观察学生对开放式问题的书面解决方法,并识别(a)概念理解的证据,(b)理解的缺口,(c)计算错误。在这种分析中,判断解决方案是否正确或要求学生提供单一的“官方”解决方案路径并不如揭示学生的数学思维那么重要。

_影响因素:_哪怕是在项目式教学中,我们倾向于把项目拆解为一个个有确定性答案的子项目,对于开放式问题整体评估的需求是缺位的。

_典型产品:_Mathnet, Sorcerer

11)典型任务:考试防作弊 (Less-cheatable questions)

随着AI做题能力越来越强大,利用AI在考试中作弊变成一个大问题。如果转换考核方案,老师可以使用AI工具面试学生,询问关于他们的论文研究方法、结构设计选择以及创作过程的具体问题,确保学生真正理解并参与了作业的撰写。

此外,为了进一步检验学生的理解和分析能力,老师可以要求学生录制视频或音频解说他们的研究成果,AI工具则自动转录并评估这些演讲。这样的方法不仅促进了学生的分析思维和口头表达能力的发展,还通过技术手段加强了作业的原创性验证,避免了简单的作弊行为。通过这种方式,教育者不仅提升了教学质量,也为家长提供了一个明确的窗口,了解孩子在学术上的真实表现和进步。

_影响因素:_能力很重要,但是能力本身也很难被标化考试去评估。老师更希望AI工具可以防止学生在传统考试中作弊,而非利用AI考核学生能力。

_典型产品:_GPTZero

04

角色:老师

环节:教研

12)典型任务:课题论文 (Incorporating research-based practice)

课题、论文的学习对提高老师的教学能力大有裨益,但是在繁忙的日常工作中老师很难抽出时间搜索、精读相关文章,AI可以帮助老师总结论文摘要,并且提供借鉴论文中的方法和技巧去优化自己的教学方法。

影响因素:

  • 先找到。论文浩如烟海且层出不穷,AI要突破的核心问题是找到老师最需要的论文,如果提供给老师的论文相关性太低就起不到提效减负的作用。

  • 数据源。AI要能够借鉴论文为老师提供可以快速落地的教学建议和内容,而这就需要AI能够获取了解老师自身的教学情况和目标,这一端的数据如何能够和AI打通也是要解决的关键问题。

典型产品:

Elicit, Humata, Scite, Consensus, Genei

13)典型任务:教研 (Teaching advisor)

老师可以利用AI工具完善自己的教学方法,包括评估与完善自己的教案、课堂教学方法与策略、课程计划、课堂管理、课堂讨论、分析学生优点和薄弱点的方法。

AI还可以为老师推荐有益的教研文章、课题和讨论内容。甚至我们还可以让AI模拟课堂教学,由AI扮演学生与老师互动打磨老师的教学技巧。

_影响因素:_学生学的好是因为教的好还是因为选拔的好?更好的教研、教学方法和课堂互动能立竿见影、快速提高学生成绩吗?或者我们只是需要推送给学生更精准的练习题?

典型产品:

EduGPT, TeachingLab.ai, Coteach.ai

14)典型任务:知识更新 (Background knowledge refresh)

老师可以利用AI更新自己的知识储备,以适应新的教学标准、考试调整和社会变化。

05

角色:老师

环节:办公

15)典型任务:日常办公 (Admin support)

AI可以帮助老师提高办公效率,典型工作包括在课程结束后生成一个学习报告给到家长,告知学生的学习进展和下次/下周的学习任务,教学进度报告,任务提醒等。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值