GLM-4已支持Ollama部署

GLM-4已支持Ollama部署

智谱开源GLM-4已支持Ollama部署:

在这里插入图片描述

# 执行以下命令即可部署运行  
ollama run glm4

注意:此模型需要Ollama 0.2或更高版本,目前处于预发布阶段。

当前支持ollama部署的仅为语言模型,多模态模型尚不支持ollama部署。

模型介绍

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B
及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 GLM-4-9B-Chat-1M 模型和基于 GLM-4-9B 的多模态模型
GLM-4V-9B。GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
表现出超越 GPT-4-turbo-2024-04-09、Gemini1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

模型列表

ModelTypeSeq LengthDownloadOnline Demo
GLM-4-9BBase8K🤗 Huggingface 🤖 ModelScope/
GLM-4-9B-ChatChat128K🤗 Huggingface 🤖 ModelScope🤖 ModelScope
GLM-4-9B-Chat-1MChat1M🤗 Huggingface 🤖 ModelScope/
GLM-4V-9BChat8K🤗 Huggingface 🤖 ModelScope/

评测结果

对话模型典型任务

ModelAlignBenchMT-BenchIFEvalMMLUC-EvalGSM8KMATHHumanEvalNaturalCodeBench
Llama-3-8B-Instruct6.408.0068.668.451.379.630.062.224.7
ChatGLM3-6B5.185.5028.166.469.072.325.758.511.3
GLM-4-9B-Chat7.018.3569.072.475.679.650.671.832.2

基座模型典型任务

ModelMMLUC-EvalGPQAGSM8KMATHHumanEval
Llama-3-8B66.651.2-45.8-33.5
Llama-3-8B-Instruct68.451.334.279.630.062.2
ChatGLM3-6B-Base61.469.026.872.325.758.5
GLM-4-9B74.777.134.384.030.470.1

由于 GLM-4-9B 在预训练过程中加入了部分数学、推理、代码相关的 instruction 数据,所以将 Llama-3-8B-Instruct 也列入比较范围。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户想了解如何在Ollama平台上部署Langchain-Chatchat。首先,我需要回想一下现有的知识库中的相关信息。根据提供的引用,引用[2]提到了使用Xinference来部署Langchain-Chatchat,而引用[3]则提供了GitHub地址和创建虚拟环境的步骤。不过用户问的是Ollama平台,而Ollama主要用于本地运行大型语言模型,可能需要调整原有的部署步骤。 首先,Ollama支持本地运行模型,所以需要确认Langchain-Chatchat是否支持Ollama作为后端。可能需要在配置文件中指定Ollama的API地址。比如,在初始化时可能要用类似`chatchat init -l ollama`这样的命令,但需要查看官方文档是否支持。 然后,安装步骤可能需要先安装Ollama,再按照Langchain-Chatchat的标准流程配置。比如,克隆仓库、安装依赖、修改配置文件中的模型路径为Ollama的本地服务地址,比如http://localhost:11434。启动Ollama服务后,再启动Langchain-Chatchat的服务端和客户端。 可能遇到的问题包括依赖冲突,需要确保Python版本和库的兼容性。另外,需要确认Ollama支持的模型是否与Langchain-Chatchat兼容,比如是否支持glm4或bge等模型。如果官方文档没有明确说明,可能需要社区或论坛的支持。 用户还可能关心如何验证部署是否成功,比如通过访问本地知识库管理界面或进行聊天测试。最后,生成相关问题时,要考虑用户可能的后续疑问,比如性能优化、模型选择或集成到现有系统的方法。</think>### 如何在Ollama平台上部署Langchain-Chatchat? #### 部署步骤概述 目前官方文档未明确说明直接支持Ollama平台,但可通过以下步骤尝试适配: 1. **安装Ollama环境** - 下载并安装Ollama支持Linux/macOS/Windows)[^3] ```bash curl -fsSL https://ollama.ai/install.sh | sh ``` 2. **配置Langchain-Chatchat** - 克隆仓库并创建虚拟环境(Python≥3.11) ```bash git clone https://github.com/chatchat-space/Langchain-Chatchat conda create -n langchain python=3.11.7 conda activate langchain ``` - 安装依赖(注意需兼容Ollama接口) ```bash pip install -r requirements.txt ``` 3. **修改模型配置** - 在`configs/model_config.py`中,将LLM服务地址指向Ollama本地API: ```python LLM_MODEL = { "ollama": { "api_base_url": "http://localhost:11434", # Ollama默认端口 "api_key": "none" } } ``` 4. **启动服务** ```bash # 启动Ollama服务 ollama serve # 启动Langchain-Chatchat python startup.py -a ``` #### 关键注意事项 - **模型兼容性**:需确认Ollama支持的模型是否包含Langchain-Chatchat要求的模型(如`glm4`或`bge`)[^1] - **接口适配**:可能需要修改`libs/chatchat-server`中的API调用逻辑以匹配Ollama接口规范[^2] - **依赖冲突**:注意`protobuf`等库的版本兼容问题,建议使用虚拟环境隔离[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值