大模型的“记忆”不应仅仅只依靠向量数据库,mem0是一个很好的“融合架构”实践方向

我们在探讨大模型应用的成败时,我们往往会聚焦于三个关键要素:模型本身的性能、支撑长期记忆能力的知识库,以及扩展执行能力的工具箱。企业级层面更多因素参考下图:

感兴趣可以联系获取更多细节

就为大模型构建记忆能力来讲,过去一年里我们的重点落在向量检索层面,其存储底层焦点就是向量数据库,曾一度爆发向量数据库大战。随着需求的复杂化,我们越来越清楚地意识到,大模型的记忆能力仅仅依赖向量数据库是不够的。在今年,随着GraphRAG的爆火,知识图谱融合到RAG中变成一个新的热点,这也反映了在此领域的发展趋势。

融合"记忆"架构

从笔者来看,不论是向量数据库,图数据库,KV数据库,以及关系数据库,他们都各有所长,都可以为大模型提供特有的上下文供给,比如检索一个问题可以知识图谱构建骨架,向量数据库来联想周边相似的内容,kv数据库丰富细节,关系数据库提供可靠数据支持。它们融合起来,能够更全面,更准确的召回结果,以便大模型生成更准确的结果。可以预言,向量数据库、图数据库、KV数据库等多种存储方式结合,构建出一个多层次的记忆系统,为大模型提供了更全面、更智能的记忆支持,将会成为主流实践。

最近有一篇论文《HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction》,也用实际的评估结果证明GraphRAG + VectorRAG,即 HybridRAG,从向量数据库和知识图谱(KG)中检索上下文,显著优于传统的单一使用 VectorRAG 和 GraphRAG的结果。在信息提取过程中,利用向量数据库进行广泛的相似性检索,同时通过知识图谱提供结构化的、关系丰富的上下文数据,从而生成更准确、上下文相关的回答。

在论文提到的金融领域的实验显示,HybridRAG在检索准确性和答案生成方面表现出色,尤其在结合了两种RAG方法后,相比单独使用任一技术,HybridRAG在信实性(faithfulness)和答案相关性(answer relevance)等关键指标上都有显著提升。以下是论文中三种RAG管道(VectorRAG、GraphRAG、HybridRAG)在不同评估指标上的实验结果展示:

评估指标VectorRAGGraphRAGHybridRAG
准确性(Faithfulness)0.940.960.96
答案相关性(Answer Relevance)0.910.890.96
上下文精度(Context Precision)0.840.960.79
上下文召回率(Context Recall)1.00.851.0

来自:https://arxiv.org/abs/2408.04948

现在,我们已经理解了多种异构存储对大模型记忆构建的意义,那么在这方面比较有前途的框架支持呢。

Mem0

Mem0正是这样一个项目,它通过结合知识图谱、向量数据库和键值存储等多种数据存储方式,为AI提供了一个强大的记忆中间层。这不仅让AI能够记住用户偏好,还能根据个体需求不断学习和适应。

Mem0的记忆系统不仅仅是数据的简单存储和检索,而是通过智能化的分析和管理,让大模型的记忆变得更具个性化,Mem0可以即时更新记忆,加入新的信息和交互,在多个会话中保留信息,保持对话连续性,对于长期参与至关重要,如虚拟伴侣或个性化学习助手。,維持上下文的連貫性,具有时效性、相关性和遗忘机制,会优先考虑最近的对话,并逐渐遗忘过时的信息,这能够确保记忆的准确和及时,以便给出更准确的响应。

官方是这么解释其工作过程的:

Mem0 采用混合数据库方法来管理和检索人工智能代理和助手的长期记忆。每个记忆都与唯一标识符(如用户 ID 或Agent ID)相关联,从而使 Mem0 能够组织和访问特定于个人或上下文的记忆。当使用 add() 方法将信息添加到 Mem0 时,系统会提取相关事实和偏好,并将其存储到不同的数据存储区:向量数据库、KV数据库和图数据库。当AI Agent或 LLM 需要调用记忆时,就会使用 search() 方法。然后,Mem0 会在这些数据存储中执行搜索,从每个来源检索相关信息。然后,这些信息会通过一个评分层,评分层会根据相关性、重要性和再现性来评估这些信息的重要性。检索到的记忆可以根据需要添加到 LLM 的提示中,从而增强其响应的个性化和相关性。

当一个AI助手或代理与用户互动时,Mem0会根据交互中的关键信息,为用户建立专属的记忆空间。通过对用户的长期行为进行分析,Mem0能够实时调整和优化大模型的应答,使其更加贴近用户的个性和需求。

例如,当你告诉AI助手你喜欢在周末打网球时,Mem0不仅会记录下这条信息,还会通过图数据库将这条信息与其他相关记忆(如你平时的运动习惯、喜欢的运动品牌等)关联起来。未来,当你再与AI互动时,它不仅能记住你喜欢网球,还能根据这些信息提供更为细致和个性化的建议。

下面是mem0使用的基本方法。

pip install mem0ai  

import os  
from mem0 import Memory  
  
# 假设你已经有了OpenAI API密钥  
os.environ['OPENAI_API_KEY'] = 'sk-proj-V7DGXzoKsCZVKMGSq3otY4ir2ip8vUwpI8ec_nT3BlbkFJAOz9PVs3oe-6Qq8gW0DRBGBOqTmcsfWP4FDkdXymrdTN9kSUXFqmEdrycA'  
  
m = Memory()  
  
def store_practice_memory(user_id, practice_details):  
    """  
    存储用户的网球训练记忆。  
    """  
    m.add(practice_details, user_id=user_id, metadata={"category": "tennis_practice"})  
    all_memories = m.get_all(user_id=user_id)  
    print("memorie0------: ", all_memories[0])  
    memory_id = all_memories[0]["id"] # get a memory_id  
    return memory_id  
  
  
def retrieve_practice_memory(user_id, query):  
    """  
    检索用户的网球训练记忆。  
    """  
    related_memories = m.search(query=query, user_id=user_id)  
    return related_memories  
  
def provide_training_advice(user_id, query):  
    """  
    提供个性化的网球训练建议。  
    """  
    training_history = retrieve_practice_memory(user_id, query)  
      
    if training_history:  
        response = "基于你之前的训练,建议你今天专注于提升反手击球技巧。"  
    else:  
        response = "欢迎开始你的网球训练之旅,让我们从基础的正手和反手击球开始吧。"  
      
    return response  
  
def update_practice_memory(memory_id, new_details):  
    """  
    更新用户的网球训练记忆。  
    """  
  
    m.update(memory_id=memory_id, data=new_details)  
    return memory_id  
  
def get_memory_history(user_id, memory_id):  
    """  
    获取特定记忆的历史记录。  
    """  
    all_memories = m.get_all(user_id=user_id)  
    print(all_memories)  
    memory_id = all_memories[0]["id"] # get a memory_id  
    history = m.history(memory_id=memory_id)  
    return history  
  
def delete_memory(memory_id):  
    """  
    删除特定记忆。  
    """  
    result = m.delete(memory_id=memory_id)  
    return result  
  
def delete_all_memory(user_id):  
    """  
    删除所有记忆。  
    """  
    result = m.delete_all(user_id=user_id)  
    return result  
  
  
user_id = "alice"  
practice_details = "今天练习了正手击球,感觉力量控制有所提升。"  
memory_id = store_practice_memory(user_id, practice_details)  
print(f"memory_id: {memory_id}\n")  
#memory_id: 66b96ee0-dab6-4347-bcf6-280845f87983  
  
  
# 用户请求训练建议  
query = "正手击球训练"  
advice = provide_training_advice(user_id, query)  
print(f"advice: {advice}\n")  
#advice: 基于你之前的训练,建议你今天专注于提升反手击球技巧。  
  
# 用户在某项技能上取得了显著进步,更新记忆  
new_details = "正手击球技巧已显著提升,可以开始练习截击了。"  
update_practice_memory(memory_id, new_details)  
  
# 获取记忆的历史变化  
memory_history = get_memory_history(user_id, memory_id)  
print(f"memory_history: {memory_history}\n")  
  
#memory_history: [{'id': '1d1e7ac4-6cd5-431a-b931-b71d4940c30b', 'memory_id': '66b96ee0-dab6-4347-bcf6-280845f87983', 'old_memory': None, 'new_memory': 'Practiced forehand strokes today. Feels that power control has improved.', 'event': 'ADD', 'created_at': '2024-09-01T22:38:57.313817-07:00', 'updated_at': None}, {'id': 'fd36b9a3-4d50-44e8-9997-1d5a1a9f09f4', 'memory_id': '66b96ee0-dab6-4347-bcf6-280845f87983', 'old_memory': 'Practiced forehand strokes today. Feels that power control has improved.', 'new_memory': '正手击球技巧已显著提升,可以开始练习截击了。', 'event': 'UPDATE', 'created_at': '2024-09-01T22:38:57.313817-07:00', 'updated_at': '2024-09-01T22:38:57.752296-07:00'}]  
  
# 删除记忆  
delete_memory(memory_id)  
all_memories = m.get_all(user_id)  
print(f"all_memories: {all_memories}\n")  
  
#all_memories: []  

图数据库使用:

  • 构建
from mem0 import Memory  
  
config = {  
    "llm": {  
        "provider": "openai",  
        "config": {  
            "model": "gpt-4o-mini",  
            "temperature": 0  
        }  
    },  
    "graph_store": {  
        "provider": "neo4j",  
        "config": {  
            "url": URL,  
            "username": USERNAME,  
            "password": PASSWORD  
        }  
    },  
    "version": "v1.1"  
}  
  
m = Memory.from_config(config_dict=config)  
  
user_id = "alice123"  
m.add("I like painting", user_id=user_id)  
m.add("I love to play badminton", user_id=user_id)  
m.add("I hate playing badminton", user_id=user_id)  
m.add("My friend name is john and john has a dog named tommy", user_id=user_id)  
m.add("My name is alice", user_id=user_id)  
m.add("John loves to hike and Harry loves to hike as well", user_id=user_id)  
m.add("My friend peter is the spiderman", user_id=user_id)  
  

  • 查询:
m.get_all(user_id=user_id)  
m.search("Who is spiderman?", user_id=user_id)  
{'memories': [{'id': '44c054fc-a671-4b51-baee-76f4f73b8135',  
   'memory': "Friend named Peter is referred to as 'the spiderman.'",  
   'hash': '3990cbff8c4252e1ea3435a9f0eebf3d',  
   'metadata': None,  
   'score': 0.657225732037368,  
   'created_at': '2024-08-27T15:53:17.605817-07:00',  
   'updated_at': None,  
   'user_id': 'alice123'}],  
 'entities': [{'source': 'peter',  
   'relation': 'identity',  
   'destination': 'spiderman'}]}  

在这一过程中,Mem0不仅仅是一个简单的记忆存储工具,而是通过对信息的深度处理,成为了一个智能化的“记忆中枢”,帮助大模型在与用户的每次互动中都能变得更加精准和贴心。

还有一个类似的项目GraphMemory(https://github.com/bradAGI/GraphMemory),感兴趣可以查阅。

可以推测,混合的记忆存储结构会和混合RAG检索结构一起,成为LLM应用的标准范式。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值