【AI大模型应用开发】以LangChain为例:从短期记忆实战,到如何让AI应用保持长期记忆的探索

  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

在这里插入图片描述


在AI应用中,无论是多轮对话场景、RAG场景还是AI Agent场景中,记忆能力都是不可或缺的一部分。然而,记忆能力是目前大模型的短板,所以,现在很多框架,诸如 LangChain、MetaGPT 等,都封装了自己的记忆模块,以方便开发者实现自己大模型应用的记忆功能。

之前我们简单概览了一下 LangChain 的 Memory 模块(【AI大模型应用开发】【LangChain系列】3. 一文了解LangChain的记忆模块(理论实战+细节)),那只是在多轮对话场景中,简单的取最近几次的对话历史作为记忆。这是最简单的使用记忆的方法,也是短期记忆的一种。

本文我们来系统看下实现大模型应用记忆的方法,包括短期记忆和长期记忆。还是以LangChain为例来进行实战。

文章目录

  • 0. LangChain中 Memory 实战
    • 0.1 记忆封装罗列
    • 0.2 实践:VectorStoreRetrieverMemory的使用
      • 0.2.1 完整代码
      • 0.2.2 代码解释
      • 0.2.3 运行效果展示
  • 1. 如何让AI应用具备长期记忆?
    • 1.1 LangChain 中的记忆模块是否具有长期记忆的能力?
    • 1.2 关于让AI应用具备长期记忆的一些研究
      • 1.2.1 记忆思考:回忆和后思考使LLM具有长期记忆
      • 1.2.2 递归总结在大型语言模型中实现长期对话记忆
      • 1.2.3 更多研究

0. LangChain中 Memory 实战

我这里将记忆简单理解为对话历史,查询历史等历史记录。

0.1 记忆封装罗列

在 LangChain 中提供了多种获取记忆的封装,例如ConversationBufferMemoryConversationBufferWindowMemoryConversationTokenBufferMemory等。

简单罗列如下:

  • ConversationBufferMemory可以理解为通用的将全部的历史记录取出来。
  • ConversationBufferWindowMemory可以理解为滑动窗口,每次只取最近的K条记录。
  • ConversationTokenBufferMemory可以理解为控制每次取的历史记录的Token数。
  • ConversationSummaryMemory: 对上下文做摘要
  • ConversationSummaryBufferMemory: 保存 Token 数限制内的上下文,对更早的做摘要
  • VectorStoreRetrieverMemory: 将 Memory 存储在向量数据库中,根据用户输入检索回最相关的部分
  • ConversationEntityMemory:保存一些实体信息,例如从输入中找出一个人名,保存这个人的信息。
  • ConversationKGMemory:将历史记录按知识图谱的形式保存和查询

这里面的大部分记忆封装,之前咱们已经学习过了,这里不再重复。详细的使用教程可以参考我之前的文章:【AI大模型应用开发】【LangChain系列】3. 一文了解LangChain的记忆模块(理论实战+细节)

下面看下 VectorStoreRetrieverMemory 的使用和实现效果。

0.2 实践:VectorStoreRetrieverMemory的使用

0.2.1 完整代码

from langchain.memory import VectorStoreRetrieverMemory
from langchain_openai import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationChain
from langchain.prompts import PromptTemplate

vectorstore = Chroma(embedding_function=OpenAIEmbeddings())
retriever = vectorstore.as_retriever(search_kwargs=dict(k=1))
memory = VectorStoreRetrieverMemory(retriever=retriever)

memory.save_context({"input": "我喜欢学习"}, {"output": "你真棒"})
memory.save_context({"input": "我不喜欢玩儿"}, {"output": "你可太棒了"})

PROMPT_TEMPLATE = """以下是人类和 AI 之间的友好对话。AI 话语多且提供了许多来自其上下文的具体细节。如果 AI 不知道问题的答案,它会诚实地说不知道。

以前对话的相关片段:
{history}

(如果不相关,你不需要使用这些信息)

当前对话:
人类:{input}
AI:
"""

prompt = PromptTemplate(input_variables=["history", "input"], template=PROMPT_TEMPLATE)
chat_model = ChatOpenAI()
conversation_with_summary = ConversationChain(
    llm=chat_model,
    prompt=prompt,
    memory=memory,
    verbose=True
)

print(conversation_with_summary.predict(input="你好,我叫同学小张,你叫什么"))
print(conversation_with_summary.predict(input="我喜欢干什么?"))

0.2.2 代码解释

(1)代码中我们使用了 VectorStoreRetrieverMemory 作为记忆存储和获取的模块。它既然是向量存储和查询,所以接收参数:retriever=retriever,必须要穿给它一个向量数据库才能工作。

(2)然后使用了 ConversationChain 作为对话的Chain。它接收一个 memory = memory 参数设置,指定使用的记忆类型。默认是最普通的 ConversationBufferMemory 类型。

在这里插入图片描述

(3)什么时候会去检索记忆呢?在Chain运行 invoke 的一开始,就加载了。源码如下:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
可以看到,最后就是用用户的输入,去向量数据库中检索相关的片段作为需要的记忆。

0.2.3 运行效果展示

第一个问题,检索到的内容不相关,但是也得检索出一条。
在这里插入图片描述
第二个问题,检索到的内容相关,用检索到的内容回答问题。
在这里插入图片描述

1. 如何让AI应用具备长期记忆?

我这里将“长期记忆”理解为持久化记忆或者长上下文记忆。也就是两种形式的记忆我都认为是“长期记忆”:

  • 第一种:持久化记忆,对话历史等历史记录持久化保存,不会随着进程的退出而消失。例如保存成功文件或存储进数据库等。
  • 第二种:长上下文记忆,当历史记录特别多时,如何从历史记录中找出有用的记忆,而不是只关注最近的几条历史记录。

1.1 LangChain 中的记忆模块是否具有长期记忆的能力?

上面罗列的和实战的 LangChain 中的记忆模块,ConversationBufferMemory
ConversationBufferWindowMemoryConversationTokenBufferMemory 看起来都无法实现长期记忆的能力:无法持久化(看源码,底层都是一个List类型,保存到内存,随着进程消亡而消亡),也没法查询长的上下文。

在这里插入图片描述
ConversationSummaryMemoryConversationSummaryBufferMemory 在一定程度上能提供更多的记忆信息(因为其对之前的历史记录做了总结压缩),所以在某些上下文不是特别长的场景中,还是可以用一用来实现简单的长期记忆能力的。

ConversationEntityMemoryConversationKGMemory一个只保存实体信息,一个将历史记录组织成知识图谱,会对长上下文场景中的长时记忆功能非常有用。它可以从全局的角度将用户提问中的实体或相关知识作补充,而不是关注最近的几次对话。

VectorStoreRetrieverMemory应该是最好和最能实现长期记忆能力的类型了。一方面,它是向量数据库存储,可以方便的持久化数据,另一方面,它的向量检索能力,本来就是针对用户提问检索出最相关的文档片段,不受长上下文的窗口限制。但是其检索的相关片段之间是否存在信息缺失等,会影响长时记忆的准确性,从而影响最终的结果。

所以,ConversationEntityMemoryConversationKGMemory + VectorStoreRetrieverMemory 是否可以一试?三者结合,保持相关片段的相关性,同时利用实体关系和知识图谱进行补充,是否可以更好地实现长时记忆的能力?感兴趣的可以一起讨论~

1.2 关于让AI应用具备长期记忆的一些研究

1.2.1 记忆思考:回忆和后思考使LLM具有长期记忆

论文原文:Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory

这篇文章提出了一种名为TiM(Think-in-Memory)的记忆机制,旨在使LLM在对话过程中保持记忆,存储历史思考。TiM包括两个关键阶段:在生成回复之前,LLM从记忆中回想相关思考;在生成回复之后,LLM进行后思考并将历史和新思考结合起来更新记忆。

下图描述了TiM方法的使用方式:

(1)在回答第二个问题时,需要考虑问题1的内容,从问题1中推理出答案,而后在回答问题2。
(2)在回答第三个问题时,需要同时考虑问题1和问题2,从问题1和问题2中推理出答案,而后再回答问题3。

这就导致了问题的存在:问题1被推理了两遍,两遍的结果还可能不一样,导致最终的错误。

而TiM的思路,是将每一个问题的思考也存起来,这样,在回答问题3时,可以使用问题2之前的思考,避免重新思考问题1,从而避免多次思考结果不一致导致的错误。

在这里插入图片描述

具体步骤如下:

在这里插入图片描述
总的原理是,将相关的记忆放到一起,例如上图中,关于book的谈话放到index 0中,关于moive的谈话放到index 1中。

如何将相关内容放到一起的?论文中实现了一种基于局部敏感哈希(LSH)的存储系统,用于高效地存储和检索大规模的向量数据。LSH的作用是将每个向量映射到一个哈希索引,相似的向量有更高的概率被映射到相同的哈希索引。

而相同的哈希索引可以将用户问题固定到某一块记忆中,然后只在这一块记忆中进行向量检索,大大提高了检索效率。

这篇文章还是值得精读一下的,数据的组织方式和索引方式都比较高级,很有启发。

1.2.2 递归总结在大型语言模型中实现长期对话记忆

论文原文:Recursively Summarizing Enables Long-Term Dialogue Memory in Large Language Models

这篇文章提出了一种递归总结的方法,用于增强大模型的长期记忆能力,以解决在长对话中无法回忆过去信息和生成不一致响应的问题。该方法首先刺激LLM记忆小的对话上下文,然后递归地使用先前的记忆和后续的上下文生成新的记忆。

其流程如下:
在这里插入图片描述
简单概括,就是:上一轮的内容总结 + 本轮的问题回答 = 本轮的内容总结。本轮的内容总结 + 下轮的问题回答 = 下轮的内容总结。… 不断迭代。与 LangChain中ConversationSummaryMemory 的实现很类似。

这种方法每一轮都要总结一次,也就是调用一次大模型,使用成本很高啊… 实际生产中应该落地比较难。

1.2.3 更多研究

更多关于AI应用 Memory 的研究可以参考下面这个文章:

LLM-based Agent Memory相关论文集锦

加个TODO,还没看完,大家可以一起看。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜同学小张 🙏

本站文章一览:

在这里插入图片描述

  • 54
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
AI模型应用开发实战是指在实际项目中应用和开发人工智能模型的过程。在开展这项工作时,我们需要遵循一系列步骤和准则,确保应用的高效性和可行性。 首先,我们需要明确项目目标和需求。在制定开发计划之前,我们必须清楚了解项目的具体目标和需求,例如是要开发一个智能客服系统,还是进行图像识别或自然语言处理等任务。 接下来,我们需要收集和准备数据。数据是训练大模型不可或缺的要素,因此我们需要选择合适的数据集,并进行数据预处理,包括数据清洗、标注和分割等工作。同时,为了保护数据的隐私和安全性,我们也需要采取相应的措施。 然后,我们需要选择合适的大模型和算法。根据项目需求,我们可以选择现有的大模型,如OpenAIGPT系列或Google的BERT模型,也可以根据需求进行定制化开发。在选择算法时,我们需要考虑模型的准确性、效率和可扩展性等方面。 接着,我们进行模型训练和优化。这一步骤包括设置训练参数、利用数据进行模型训练和验证,以及对模型进行调优和优化,以提高其准确性和性能。 最后,我们进行应用部署和测试。在将模型应用到实际场景之前,我们需要进行系统集成、性能测试和安全验证等步骤。一旦通过测试,我们就可以将应用部署到服务器、云平台或移动设备上,供用户使用。 总结来说,AI模型应用开发实战需要我们明确目标和需求、准备数据、选择模型和算法、进行训练和优化,最后进行部署和测试。通过这些步骤,我们能够开发出高效、可靠的人工智能模型应用,为用户提供优质的服务。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学小张

如果觉得有帮助,欢迎给我鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值