又火三个惊艳的AI项目,已开源!

大家好,今天继续给大家分享一下科技圈最近发生的那些事儿。

一、FluxMusic

在生活中,大大小小的事时常发生,你有没有设想过给自己的生活配个BGM?

例如,生活之余和家人朋友牌桌对拼时,会不会幻想“赌神”的音乐在你出牌时响起?在漆黑的夜里疾驰归家时,会不会突感中二,想象自己是「秋名山车神」,脑海里有《头文字D》的音乐在涌动?

那么,有没有可能有这样一款应用,可以根据你简单的一句话想法,帮你生成相应风格的音乐呢?

FluxMusic 是一项基于变换器扩展的音乐生成项目。专注于文本到音乐的生成。

FluxMusic 的原理基于校正流变换器(Rectified Flow Transformers),其核心是将文本描述转化为音乐的生成过程,主要分为以下几个步骤:

  • 文本和音乐模态的结合:FluxMusic 利用预训练的文本编码器(如T5-XXL 和CLAP-L)提取文本的粗粒度和细粒度特征,将这些文本特征与音乐的mel谱图(mel-spectrogram)结合。粗粒度的文本信息用于调制生成过程,细粒度的文本特征与音乐补丁序列一起作为输入,用于音乐生成。

  • 双流和单流结构:模型首先将文本和音乐数据输入双流模块,在此阶段,文本和音乐作为独立的模态进行处理,并通过注意力机制在两者之间交换信息。接着,模型进入单流阶段,文本流被移除,仅保留音乐流用于生成过程中的噪声预测。

  • 潜在空间的噪声预测:模型在潜在的VAE空间中进行噪声预测,通过训练模型在从噪声到数据的转换路径中进行预测。校正流(Rectified Flow)方法使得数据和噪声之间沿着线性路径连接,从而提高生成效率和模型性能。

  • 生成和重建:通过变换器和校正流模型的共同作用,生成潜在空间中的mel谱图,然后利用预训练的Hifi-GAN将生成的mel谱图还原为可听的音频。

光是想想,这个项目的潜能就超级大。

作为辅助工具,音乐家可以通过简单的文本描述快速生成符合需求的音乐片段,用于灵感激发或为特定项目(如影视、广告)提供背景音乐。或者,在心理健康应用中,用户可以根据自己的情绪状态或需求(如“需要平静的音乐来放松”)生成个性化的放松音乐。你甚至可以将这些几乎独一无二的音乐保存下来,比起寻求专业团队的帮助,这是不是一种性价比超高的“私人定制”呢?

作者团队提供了超多的训练集可供选择:

那么,如果给自己现在的生活配上一个 BGM,你会用哪一首歌呢?如果你始终无法找到能描述当下的音乐,不妨让 FluxMusic 帮你创作属于你的专属旋律吧!

项目地址:

https://github.com/feizc/fluxmusic

二、StoryMaker

StoryMaker 是一种个性化解决方案,它不仅保留了面部的一致性,还保留了多角色场景中的服装、发型和身体,从而有可能制作出由一系列图像组成的故事。

总的来说就是,提供几张饱含信息量的照片,StoryMaker 可以帮你构造出一个由这些图像组成的虚拟小故事。该项目基于变换器和扩散模型,通过利用多轮推理和特征一致性机制,确保生成的图像中的角色在不同场景和姿势下保持一致。

例如,仅仅给出一张照片,我们就可以让 StoryMaker 创造出照片中的人物在不同场景下的样子。

哈哈,或许平日里总是一丝不苟的人,在 StoryMaker 的创作下也有你没见过的一面呢!或者,我们有没有可能让两个本毫无关联的人,出现在同一个故事,或是同一张照片里呢?

当然,可以。只需要提供两张照片,项目便可以将两张照片中的人物进行关联,创造出一系列新照片。这下 CP 粉们狂喜了,平日里几乎毫无交流或接触的两个谁谁,在一起是什么样子?画面太美,我不敢看。还是交给 StoryMaker 自由发挥吧!

如果你对这个项目感兴趣,可以直接进入项目的主页看看教程。

项目地址:

https://github.com/RedAIGC/StoryMaker

三、LVCD

今天的最后一个项目 LVCD,是一种基于参考图像的线稿视频上色系统。

给出一个原色参考的静态图片,再给出视频图像的线稿,LVCD 会学习配色风格,直接生成效果超棒的新视频。例如,我们可以看到“再上色”版本的《幽灵公主》和《大鱼》。

怎么样,如果你看过原片,是不是觉得毫无违和感?仅仅和给出的参考图像做比较,生成视频的画风,已经和预期的原片风格差不多了。

项目通过参考帧,为线稿生成长时间、时序一致的动画视频。其中包含几个关键的模块:

  • Sketch-guided ControlNet:这是一个用于引导生成的模块,结合了线稿和参考图像来为动画添加颜色。它通过对输入线稿进行特征提取,帮助模型生成符合线稿结构的图像。

  • Reference Attention:这个模块用于将参考帧中的颜色信息传递给后续帧,特别适用于处理大幅度的动作。它通过全局注意力机制实现远距离的颜色匹配。

  • Overlapped Blending Module:这个模块在视频段之间使用重叠帧来避免累积误差,确保长时间视频生成的一致性。

  • Prev-Reference Attention:这个模块进一步加强了重叠帧之间的时序关联,确保生成帧在较远的时间点上依然能保持内容一致性。

依靠这个项目背后的技术,对于动漫工作者来说,是否可以大幅减轻工作量呢?提供线稿和风格参考图就可以生成一段效果不错的动画,如果能大规模应用,想必更多优秀的作品会更快面世。

不过这个项目目前还没有开源,可以期待一下。

项目地址:

https://luckyhzt.github.io/lvcd

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值