这也太强了吧!OpenAI Realtime API 的这些用法让人拍案叫绝!

自从 OpenAI 发布 Realtime API 后,开发者们的创造力迅速爆发。

短短一周时间,各种创新的应用层出不穷,充分体现其实时处理语音与文本的卓越能力。

很多用法让人眼前一亮,纷纷感叹:“这也太强了吧!”

以下是一些让人拍案叫绝的用法:

1. 语音画画

有开发者利用 Realtime API 创造了 “Teledraw”——通过语音指令实时生成图像。

只需要告诉 AI 你想画什么,它立刻就能将你的语音转化为画作。

还记得那些“灵魂画手”吗?现在你只要动动嘴,就可以当上一个专业的数字艺术家。

2. 语音点餐

有位开发者通过 Realtime API 打造了一个“语音控制浏览器”的工具,用户只需用语音就能控制网页浏览、进行购物甚至点餐。

该工具利用了 WebSockets 技术实现语音数据的实时传输,将用户的语音指令转换为浏览器操作指令,确保响应速度快且交互流畅。

这种方式不仅解放了双手,还为那些不喜欢打字的“懒人”打开了一扇新的大门。

3. 语音模拟面试

利用 Realtime API,有开发者开发了一个模拟面试工具。

用户上传简历后,AI 会模拟面试官进行提问,帮助你进行面试练习。

目前,该工具仅支持斯坦福 MBA 申请,24 小时只能免费试用一次,且每次限制为两分钟。

入口:https://admit-ai.com/apps/interview

4. 语音爬虫工具

一位开发者用 Realtime API 构建了可以实时抓取网站数据的语音爬虫工具,只需要用语音向 AI 询问,它便能实时获取网站信息。

这款工具名为 Firecrawl,尤其适合需要实时数据更新的用户,例如市场调研和新闻分析等。

获取更多信息:https://github.com/mendableai/firecrawl

5. 与文档实时对话

通过 Realtime API,开发者实现了与文档的实时互动功能。

用户可以上传一份 PDF,用语音询问文档内容,AI 将实时给出回答。

这不仅适合学术研究,也非常适合处理复杂的合同或技术文档。

获取更多信息:https://github.com/run-llama/voice-chat-pdf

6. 语音智能体

通过将 Realtime API 连接到外部数据源(例如公司数据库、网站等),开发者构建了实时语音智能体。

例如,该智能体可以连接到客户服务数据库,从而快速检索客户信息,提供即时的支持与反馈。

这个智能体不仅能回答用户的问题,还能查询公司内部文件、自动生成报告,显著提升客户支持的智能化和自动化程度。

7. 创建自己语音助手应用

借助 Realtime API,一位开发者仅用 5 分钟就搭建了一个简易的语音助手应用。

这款助手能够执行各种简单任务,展现出 Realtime API 极高的开发效率和易用性。

更有趣的是,这位开发者还提到,在实现过程中,Claude(另一个大语言模型)也参与了一部分任务,让开发体验更加顺畅。

这种短时间内搭建语音助手的能力,为开发者们打开了更加灵活、强大的开发空间。

8. iOS 开发简化

对于 iOS 开发者来说,集成 OpenAI 的 Realtime API 变得更加简单。

有开发者创建了 Swift 包,处理了诸如 WebSockets 之类的复杂技术细节,使得开发者能够专注于应用本身的功能开发。

获取 Swift 包:https://github.com/m1guelpf/swift-realtime-openai

9. Python + Gradio

利用 Python 和 Gradio,开发者可以轻松将 Realtime API 与 Web 应用结合起来。

只需几行代码,即可实现语音控制与交互,大大减少了开发时间,适合开发者快速搭建语音驱动的 Web 应用。

获取更多信息:https://github.com/gradio-app/openai-gradio

10. 语音 ReAct 智能体

利用 Realtime API,有开发者构建了一个可以进行逻辑推理的语音智能体,能够实时进行语音对话并执行复杂任务,如使用计算器或进行网页搜索。

这个智能体不仅可以通过语音进行对话,还能执行具体任务,比如使用计算器计算结果或进行网页搜索。

它不仅能对话,更能通过推理来采取行动。

获取更多信息:https://github.com/langchain-ai/react-voice-agent

什么是 Realtime API?

简单来说,Realtime API 是 OpenAI 刚推出的一个强大工具,能够实时处理语音和文本,特别适用于即时语音交互和与外部数据源的连接。

不同于传统的语音处理方法,Realtime API 显著降低了延迟,让语音交互更加自然和流畅。

通过一个 API 调用即可实现语音输入、输出、处理的全流程,开发者无需复杂的拼接,显著简化了开发过程。

例如,以下代码展示了如何使用 Realtime API 处理语音输入并生成文本输出:

import openai``   ``response = openai.Audio.transcribe(`    `api_key='YOUR_API_KEY',`    `audio_file='path/to/audio/file.wav'``)``print(response['text'])

这样,开发者只需简单的几行代码,就能完成语音数据的处理,极大地降低了开发的复杂度。

最关键的是,Realtime API 降低了使用门槛,使得以前需要花费数月时间开发的应用,如今只需短短几行代码即可实现。

这让开发者可以将更多精力投入到创意和功能的实现上。

写在最后

OpenAI 的 Realtime API 不仅仅是一个工具,它更像是一个“未来的入口”。

我们可能会看到 Realtime API 被用于更加复杂的场景,比如金融、医疗健康、智能家居等领域。

在金融领域,它可以用于实时监控市场行情、进行自动交易决策;

在医疗健康方面,可以协助医生进行患者病历的实时分析与语音记录;

而在智能家居中,用户可以通过语音助手控制家中设备,实现更智能的生活体验。

不仅仅是回答问题,语音助手可能会通过 Realtime API 实时查询数据库、做出决策,甚至自动处理一些繁琐的日常任务。

再想象一下,语音爬虫工具可以帮你获取实时的市场数据,或者一个智能语音助手帮你根据数据分析实时做出商业决策。

这将彻底改变我们的工作方式。

如果你是开发者,或者对AI技术感兴趣,不妨动手尝试一下 Realtime API,看看你能否开发出下一款 “爆款应用”。

未来的互动方式已经到来,你准备好用 Realtime API 释放你的创造力了吗?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值