基于DeepSeek打造RAG系统
源代码
http://www.gitpp.com/deepseeks/deepseek-rag
基于DeepSeek的开源项目如雨后春笋
有老外DeepSeek套壳,获得数十万用户
任何搭上DeepSeek的都会发财!这就是历史趋势
RAG系统介绍
RAG系统,全称Retrieval-Augmented Generation(检索增强生成)系统,是一种结合了信息检索与生成模型的技术方法。其核心思想在于通过整合外部知识源来增强大型语言模型(LLM)的能力,从而提供准确、相关且上下文连贯的响应。
RAG系统通常包括以下几个关键组件:
-
检索器(Retriever):负责从外部知识库或数据库中检索与用户查询相关的信息。检索器使用向量相似性度量等方法,在海量数据中快速找到与查询最匹配的内容。
-
生成器(Generator):利用生成式语言模型(如GPT系列)将检索到的信息与自身的知识库相结合,生成连贯且准确的回答或内容。
-
其他组件:如数据消毒器(用于清理和预处理数据)、分割器(将文档分割成较小的块以便处理)、知识数据库(存储处理过的文档块)等,这些组件共同协作,确保系统的有效运行。
RAG系统通过检索和生成的双重机制,显著提升了回答的质量和可靠性。它不仅能够克服生成式模型在知识时效性和专业性上的不足,还能通过整合最新的外部信息,为用户提供更加准确和全面的响应。
RAG系统的应用场景
RAG系统凭借其强大的信息检索和生成能力,在多个领域展现出广泛的应用潜力。以下是一些典型的应用场景:
- 问答服务:
- 在医疗、金融、法律等领域,RAG系统可以回答各种专业问题,提供准确的信息。例如,在医疗领域,RAG系统可以根据用户的症状描述,从医学期刊、官方指南等数据源中检索相关信息,为用户提供疾病预防、治疗方案等方面的建议。
- 客户服务:
- 企业可以利用RAG技术构建智能客服系统,快速响应客户咨询,提高服务效率和质量。例如,电商平台可以使用RAG技术,从商品详情、用户评价等多源信息中抽取相关段落,辅助生成准确的答案。
- 内容创作:
- RAG系统可以自动生成新闻报道、研究报告、技术文档等内容,节省人力成本。例如,新闻机构可以利用RAG技术,从大量的新闻报道、社交媒体内容等数据源中检索相关信息,帮助记者快速了解背景知识,撰写更全面、深入的报道。
- 文档摘要:
- 对于长篇文档,RAG系统可以自动提取关键内容和要点,生成简洁明了的摘要。这有助于用户快速了解文档的核心内容,提高工作效率。
- 智能助手:
- RAG系统可以作为手机语音助手、智能音箱等设备的后端支持,理解用户指令并提供相关信息或执行任务。例如,智能音箱可以使用RAG技术,根据用户的语音指令,从网络上检索音乐、新闻等内容并播放。
- 搜索引擎优化:
- RAG系统可以改进传统信息检索系统,提供更精准、全面的搜索结果。通过整合外部知识源和生成模型的优势,RAG系统能够更好地理解用户查询意图,返回更符合用户期望的结果。
- 知识图谱填充:
- RAG系统可以识别和添加新的知识点,完善知识图谱的实体关系。这对于构建大规模知识图谱、提高信息检索和推理能力具有重要意义。
随着技术的不断进步和应用场景的不断拓展,RAG系统有望在未来实现更广泛的应用。例如,在电子政务领域,RAG系统可以作为准确智能助手,提高政府服务效率和质量;在教育领域,RAG系统可以根据学生的学习需求和问题,检索并生成个性化的学习材料。此外,RAG系统还有望在智能家居、智能出行等领域发挥重要作用。
基于DeepSeek打造RAG系统
源代码
http://www.gitpp.com/deepseeks/deepseek-rag
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。