我是先看到了一张极其意料之外的图
我相信
但凡做过一点开发的
都知道我在说什么
于是我就写了一个测试脚本
来真实测一下主流 API 供应商
DeepSeek 官方 + 阿里/火山/腾讯云 + 硅基流动
首先我要说
除了 DeepSeek 官方,其他家都很稳定
(这里没有吐槽官方的意思,毕竟情况特殊)
至少我没检测到超时或者断开
而对于速度
我在中国时间:2025-02-13 02:04:41
进行了测试,结果如下
这里是测试记录
https://colab.research.google.com/drive/1cUqspnOrft2Qp9Oq4sGfDzlsJN_WCogl
测试代码在后面
测试方法
代码我放在了最后,可以自己跑
这个测试方法一点都不复杂,包含以下步骤:
-
通过 API 向模型服务器发送请求,记录当前时间为 t0
-
当模型返回第一个字符时,记录为 t1,此刻开始推理
-
当模型推理结束、开始生成内容时,记录为 t2
-
当生成结束时,记录为 t3
-
当 stream_options={“include_usage”: True} 的时候,模型会记录并输出以下信息
-
推理阶段所使用的 token,记做:T推
-
生成阶段所使用的 token,记做:T生
-
因此,可知:
-
模型的首响应时间:t1 - t0
-
模型的推理速度:T推/(t2-t1)
-
模型的生成速度:T生/(t3-t2)
-
模型的平均速度:(T推+T生)/(t3-t0)
在这里,我用的 Prompt 也非常简单(对于推理模型来说,太长的 prompt 也没意义)
#测试 prompt:``给我写一首七言绝句,赞叹祖国的大好河山
以下是测试切片
按生成速度从高到底排序
测试于中国时间:2025-02-13 02:04:41
测试数据
测试样本,仅包括我常用的服务商,非常主观
DeepSeek 官方 + 阿里/火山/腾讯云 + 硅基流动
火山引擎:
首 token 响应时间:1.01 秒
Reasoning 部分:318 tokens,用时:8.96 秒,推理速度:35.50 tokens/s
Content 部分:118 tokens,用时:3.12 秒,生成速度:37.76 tokens/s
总体生成:436 tokens,总用时:13.21 秒,平均速度:33.01 tokens/s
硅基流动(Pro):
首 token 响应时间:1.57 秒
Reasoning 部分:180 tokens,用时:7.57 秒,推理速度:23.78 tokens/s
Content 部分:82 tokens,用时:3.35 秒,生成速度:24.48 tokens/s
总体生成:262 tokens,总用时:12.55 秒,平均速度:20.88 tokens/s
DeepSeek 官方:
首 token 响应时间:7.12 秒
Reasoning 部分:496 tokens,用时:22.83 秒,推理速度:21.72 tokens/s
Content 部分:119 tokens,用时:5.39 秒,生成速度:22.06 tokens/s
总体生成:615 tokens,总用时:35.43 秒,平均速度:17.36 tokens/s
腾讯云/腾讯知识引擎:
首 token 响应时间:1.44 秒
Reasoning 部分:629 tokens,用时:47.82 秒,推理速度:13.15 tokens/s
Content 部分:158 tokens,用时:13.85 秒,生成速度:11.41 tokens/s
总体生成:787 tokens,总用时:63.47 秒,平均速度:12.40 tokens/s
阿里云/百炼:
首 token 响应时间:1.44 秒
Reasoning 部分:96 tokens,用时:16.21 秒,推理速度:5.92 tokens/s
Content 部分:34 tokens,用时:5.67 秒,生成速度:6.00 tokens/s
总体生成:130 tokens,总用时:23.51 秒,平均速度:5.53 tokens/s
代码
测试代码如下
记得先替换 API Key
然后 pip install openai
import time``from openai import OpenAI``import datetime``import pytz`` ``def count_tokens(text):` `return len(text.split())`` ``def test_provider(provider_config, messages):` `"""` `根据传入的 provider 配置及消息,测试生成过程,并统计各阶段指标。` `如果测试过程中出现任何错误,则打印错误信息并跳过当前服务商。` `"""` `provider_name = provider_config.get("name", "Unnamed Provider")` `print(f"\n---------------------------")` `print(f"开始测试服务商:{provider_name}")` `print(f"---------------------------\n")`` ` `try:` `api_key = provider_config.get("api_key")` `base_url = provider_config.get("base_url")` `model = provider_config.get("model")`` ` `# 初始化客户端(请确保你使用的 OpenAI 客户端支持这些参数)` `client = OpenAI(api_key=api_key, base_url=base_url)`` ` `# 初始化 token 计数器与文本变量` `reasoning_tokens = 0` `content_tokens = 0` `overall_tokens = 0`` ` `reasoning_text = ""` `content_text = ""`` ` `# 初始化计时变量` `start_time = time.time()` `first_token_time = None`` ` `# 用于记录 reasoning 与 content 部分开始与结束的时刻` `reasoning_start_time = None` `reasoning_end_time = None` `content_start_time = None` `content_end_time = None`` ` `# 发起流式请求` `response = client.chat.completions.create(` `model=model,` `messages=messages,` `stream=True,` `stream_options={"include_usage": True},` `)`` ` `# 遍历每个流式响应块` `for chunk in response:` `# 若 chunk 中没有 choices 信息,则检查是否有 usage 信息打印后继续` `if not chunk.choices:` `if chunk.usage:` `print("\n\n【Usage 信息】")` `print(chunk.usage)` `continue`` ` `# 获取第一个 choice 的 delta` `delta = chunk.choices[0].delta` `# 尝试获取 reasoning 与 content 片段(可能为空字符串)` `reasoning_piece = getattr(delta, 'reasoning_content', "")` `content_piece = getattr(delta, 'content', "")`` ` `# 记录首个 token 到达时间(仅记录一次)` `if first_token_time is None and (reasoning_piece or content_piece):` `first_token_time = time.time() - start_time`` ` `# 如果有 reasoning 内容` `if reasoning_piece:` `if reasoning_start_time is None:` `reasoning_start_time = time.time()` `reasoning_text += reasoning_piece` `tokens = count_tokens(reasoning_piece)` `reasoning_tokens += tokens` `overall_tokens += tokens` `reasoning_end_time = time.time() # 每次更新,最终记录最后一次收到的时刻` `print(reasoning_piece, end='', flush=True)`` ` `# 如果有 content 内容` `elif content_piece:` `if content_start_time is None:` `content_start_time = time.time()` `content_text += content_piece` `tokens = count_tokens(content_piece)` `content_tokens += tokens` `overall_tokens += tokens` `content_end_time = time.time() # 每次更新` `print(content_piece, end='', flush=True)`` ` `total_time = time.time() - start_time` `reasoning_time = (reasoning_end_time - reasoning_start_time) if (reasoning_start_time and reasoning_end_time) else 0` `content_time = (content_end_time - content_start_time) if (content_start_time and content_end_time) else 0`` ` `# 输出测试指标` `print("\n\n【%s】" % provider_name)` `if first_token_time is not None:` `print(f"首 token 响应时间:{first_token_time:.2f} 秒")` `else:` `print("未收到 token 响应。")`` ` `print(f"Reasoning 部分:{reasoning_tokens} tokens, 用时:{reasoning_time:.2f} 秒, 生成速度:{reasoning_tokens / reasoning_time if reasoning_time > 0 else 0:.2f} tokens/s")` `print(f"Content 部分:{content_tokens} tokens, 用时:{content_time:.2f} 秒, 生成速度:{content_tokens / content_time if content_time > 0 else 0:.2f} tokens/s")` `print(f"总体生成:{overall_tokens} tokens, 总用时:{total_time:.2f} 秒, 生成速度:{overall_tokens / total_time if total_time > 0 else 0:.2f} tokens/s")` `print("\n---------------------------\n")`` ` `return {` `"provider": provider_name,` `"first_token_time": first_token_time,` `"reasoning_tokens": reasoning_tokens,` `"reasoning_time": reasoning_time,` `"content_tokens": content_tokens,` `"content_time": content_time,` `"overall_tokens": overall_tokens,` `"total_time": total_time` `}`` ` `except Exception as e:` `# 如果出现任何错误,则打印错误信息并跳过该服务商` `print(f"服务商 {provider_name} 测试过程中发生错误:{e}")` `print("\n---------------------------\n")` `return None`` `` ``if __name__ == "__main__":` `# 待测试的对话消息(此处为示例:写一首七言绝句赞美祖国大好河山)` `messages = [` `{` `'role': 'user',` `'content': "给我写一首七言绝句,赞叹祖国的大好河山"` `}` `]`` ` `# 定义各服务商的配置` `providers = [` `{` `"name": "DeepSeek 官方",` `"api_key": "你的 API Key", # 请替换为真实 API Key:https://platform.deepseek.com/api_keys` `"base_url": "https://api.deepseek.com",` `"model": "deepseek-reasoner"` `},` `{` `"name": "阿里云/百炼",` `"api_key": "你的 API Key", # 请替换为真实 API Key:https://bailian.console.aliyun.com/?apiKey=1#/api-key` `"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1",` `"model": "deepseek-r1"` `},` `{` `"name": "硅基流动Pro",` `"api_key": "你的 API Key", # 请替换为真实 API Key:https://cloud.siliconflow.cn/account/ak` `"base_url": "https://api.siliconflow.cn/v1",` `"model": "Pro/deepseek-ai/DeepSeek-R1"` `},` `{` `"name": "火山引擎",` `"api_key": "你的 API Key", # 请替换为真实 API Key:https://console.volcengine.com/ark/region:ark+cn-beijing/apiKey?apikey=%7B%7D` `"base_url": "https://ark.cn-beijing.volces.com/api/v3",` `"model": "你的接入点" # 火山引擎这里叫接入点,在这里创建:https://console.volcengine.com/ark/region:ark+cn-beijing/endpoint?config=%7B%7D` `},` `{` `"name": "腾讯云",` `"api_key": "你的 API Key", # 请替换为真实 API Key:https://console.cloud.tencent.com/lkeap` `"base_url": "https://api.lkeap.cloud.tencent.com/v1",` `"model": "deepseek-r1"` `},` `]`` ` `# 循环对每个服务商进行测试` `print(f"本次测试开始于中国时间:{datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime('%Y-%m-%d %H:%M:%S')}")` `for provider in providers:` `test_provider(provider, messages)``
PS:上面的代码拿去随便用
你也可以直接在 Colab 里面跑
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。